Tidally induced variations in vertical and horizontal motion on Rutford Ice Stream, West Antarctica, inferred from remotely sensed observations

To better understand the influence of stress changes over floating ice shelves on grounded ice streams, we develop a Bayesian method for inferring time-dependent 3-D surface velocity fields from synthetic aperture radar (SAR) and optical remote sensing data. Our specific goal is to observe ocean tide-induced variability in vertical ice shelf position and horizontal ice stream flow. Thus, we consider the special case where observed surface displacement at a given location can be defined by a 3-D secular velocity vector, a family of 3-D sinusoidal functions, and a correction to the digital elevation model used to process the SAR data. Using nearly 9 months of SAR data collected from multiple satellite viewing geometries with the COSMO-SkyMed 4-satellite constellation, we infer the spatiotemporal response of Rutford Ice Stream, West Antarctica, to ocean tidal forcing. Consistent with expected tidal uplift, inferred vertical motion over the ice shelf is dominated by semidiurnal and diurnal tidal constituents. Horizontal ice flow variability, on the other hand, occurs primarily at the fortnightly spring-neap tidal period (M_(sf)). We propose that periodic grounding of the ice shelf is the primary mechanism for translating vertical tidal motion into horizontal flow variability, causing ice flow to accelerate first and most strongly over the ice shelf. Flow variations then propagate through the grounded ice stream at a mean rate of ∼29 km/d and decay quasi-linearly with distance over ∼85 km upstream of the grounding zone.

[1]  Gian Franco Sacco,et al.  The InSAR Scientific Computing Environment (ISCE): A Python Framework for Earth Science , 2015 .

[2]  Ian Joughin,et al.  Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach , 2002, Annals of Glaciology.

[3]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[4]  S. Tulaczyk,et al.  Basal mechanics of Ice Stream B, west Antarctica: 2. Undrained plastic bed model , 2000 .

[5]  Hermann Engelhardt,et al.  Basal mechanics of Ice Stream B, west Antarctica: 1. Till mechanics , 2000 .

[6]  Michael Eineder,et al.  Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems , 2005, IEEE Geoscience and Remote Sensing Letters.

[7]  C. Larsen,et al.  The role of the margins in the dynamics of an active ice stream , 1994 .

[8]  Ian M. Howat,et al.  Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and model-based analysis , 2012 .

[9]  J. Green,et al.  Insights into ice stream dynamics through modelling their response to tidal forcing , 2014 .

[10]  T. Murray,et al.  Bedform topography and basal conditions beneath a fast-flowing West Antarctic ice stream , 2009 .

[11]  G. Ashton The West Antarctic Ice Sheet: Behavior and Environment , 2001 .

[12]  Eric Rignot,et al.  Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf , 2004 .

[13]  Rowena B. Lohman,et al.  Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling , 2005 .

[14]  R. Alley,et al.  Oceanic Forcing of Ice-Sheet Retreat: West Antarctica and More , 2015 .

[15]  E. Fahrbach,et al.  Ice‐ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review , 2009 .

[16]  Howard A. Zebker,et al.  Geodetically Accurate InSAR Data Processor , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[17]  B. Smith,et al.  Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica , 2014, Science.

[18]  G. Gudmundsson Ice-stream response to ocean tides and the form of the basal sliding law , 2010 .

[19]  D. Vaughan,et al.  Rutford Ice Stream, Antarctica , 2013 .

[20]  Richard B. Alley,et al.  Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure , 2015 .

[21]  A. Smith,et al.  Mapping the ice‐bed interface characteristics of Rutford Ice Stream, West Antarctica, using microseismicity , 2015 .

[22]  Remko Scharroo,et al.  Generic Mapping Tools: Improved Version Released , 2013 .

[23]  Eric Rignot,et al.  Radar interferometry detection of hinge-line migration on Rutford Ice Stream and Carlson Inlet, Antarctica , 1998, Annals of Glaciology.

[24]  Eric Rignot,et al.  Ice velocity changes in the Ross and Ronne sectors observed using satellite radar data from 1997 and 2009 , 2012 .

[25]  J. Green,et al.  Temporal variations in the flow of a large Antarctic ice stream controlled by tidally induced changes in the subglacial water system , 2015 .

[26]  T. Painter,et al.  MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size , 2007 .

[27]  Angelika Humbert,et al.  Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2 , 2014 .

[28]  D. Vaughan,et al.  Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets , 2009, Nature.

[29]  D. Vaughan,et al.  Antarctic ice-sheet loss driven by basal melting of ice shelves , 2012, Nature.

[30]  David L. Goldsby,et al.  Superplastic deformation of ice: Experimental observations , 2001 .

[31]  W. Krabill,et al.  Force-perturbation analysis of Pine Island Glacier, Antarctica, suggests cause for recent acceleration , 2004, Annals of Glaciology.

[32]  J. W. Park,et al.  Ice velocity determined using conventional and multiple-aperture InSAR , 2011 .

[33]  Ian R. Joughin,et al.  Interferometric estimation of three-dimensional ice-flow using ascending and descending passes , 1998, IEEE Trans. Geosci. Remote. Sens..

[34]  S. Shyam Sunder,et al.  Creep of Polycrystalline Ice , 1990 .

[35]  Eric Rignot,et al.  Inversion of basal friction in Antarctica using exact and incomplete adjoints of a higher‐order model , 2013 .

[36]  B. Scheuchl,et al.  Ice Flow of the Antarctic Ice Sheet , 2011, Science.

[37]  Scott Hensley,et al.  Early melt season velocity fields of Langjökull and Hofsjökull, central Iceland , 2015 .

[38]  B. Scheuchl,et al.  Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011 , 2014 .

[39]  Ian Joughin,et al.  Basal shear stress of the Ross ice streams from control method inversions , 2004 .

[40]  K. Jezek,et al.  Velocities and Flux of the Filchner Ice Shelf and its Tributaries Determined from Speckle Tracking Interferometry , 2001 .

[41]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[42]  Barclay Kamb,et al.  RHEOLOGICAL NONLINEARITY AND FLOW INSTABILITY IN THE DEFORMING BED MECHANISM OF ICE STREAM MOTION , 1991 .

[43]  Erik Lintz Christensen,et al.  Tidal bending of glaciers: a linear viscoelastic approach , 2003, Annals of Glaciology.

[44]  Matt A. King,et al.  Tidal influence on Rutford Ice Stream, West Antarctica: observations of surface flow and basal processes from closely spaced GPS and passive seismic stations , 2008 .

[45]  Piyush Agram,et al.  Multiscale InSAR Time Series (MInTS) analysis of surface deformation , 2011 .

[46]  Mark Simons,et al.  Detecting transient signals in geodetic time series using sparse estimation techniques , 2014 .

[47]  B. Scheuchl,et al.  Ice-Shelf Melting Around Antarctica , 2013, Science.

[48]  J. W. Glen,et al.  The creep of polycrystalline ice , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[49]  O. Gagliardini,et al.  The stability of grounding lines on retrograde slopes , 2012 .

[50]  P. Hudleston Structures and fabrics in glacial ice: A review , 2015 .

[51]  E. Rignot,et al.  Fast recession of a west antarctic glacier , 1998, Science.

[52]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[53]  R. Goldstein,et al.  Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application to an Antarctic Ice Stream , 1993, Science.

[54]  T. Scambos,et al.  Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica , 2004 .

[55]  Edward C. King,et al.  Formation of mega-scale glacial lineations observed beneath a West Antarctic ice stream , 2009 .

[56]  GRACE observations of M2 and S2 ocean tides underneath the Filchner‐Ronne and Larsen ice shelves, Antarctica , 2005 .

[57]  E. Rodríguez,et al.  Theory and design of interferometric synthetic aperture radars , 1992 .

[58]  Douglas R. Macayeal,et al.  Large‐scale ice flow over a viscous basal sediment: Theory and application to ice stream B, Antarctica , 1989 .

[59]  Eric Rignot,et al.  Antarctic grounding line mapping from differential satellite radar interferometry , 2011 .

[60]  Frank H. Webb,et al.  Neutral atmospheric delay in interferometric synthetic aperture radar applications: Statistical description and mitigation , 2003 .

[61]  Gian Franco Sacco,et al.  InSAR Scientific Computing Environment , 2011 .

[62]  Matt A. King,et al.  Ice flow modulated by tides at up to annual periods at Rutford Ice Stream, West Antarctica , 2007 .

[63]  P. Rosen,et al.  Interferometric Synthetic Aperture Radar Geodesy , 2007 .

[64]  Richard K. Moore,et al.  Microwave Remote Sensing, Active and Passive , 1982 .

[65]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[66]  G. Gudmundsson Ice-shelf buttressing and the stability of marine ice sheets , 2012 .

[67]  Ian Joughin,et al.  Ice-Sheet Response to Oceanic Forcing , 2012, Science.

[68]  Bo Sun,et al.  Bedmap2: improved ice bed, surface and thickness datasets for Antarctica , 2012 .

[69]  Eric Rignot,et al.  Ephemeral grounding as a signal of ice-shelf change , 2001, Journal of Glaciology.

[70]  Eric Rignot,et al.  Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013 , 2014, Geophysical Research Letters.

[71]  R. DeConto,et al.  Contribution of Antarctica to past and future sea-level rise , 2016, Nature.

[72]  Charles F. Raymond,et al.  Shear margins in glaciers and ice sheets , 1996, Journal of Glaciology.

[73]  Kenneth C. Jezek,et al.  RAMP AMM-1 SAR Image Mosaic of Antarctica , 2002 .

[74]  F. A. A new tide model for the Antarctic ice shelves and seas , 2012 .

[75]  J. Rice,et al.  Shear heating and weakening of the margins of West Antarctic ice streams , 2015 .

[76]  Marc Simard,et al.  Residual motion estimation for UAVSAR: Implications of an electronically scanned array , 2009, 2009 IEEE Radar Conference.

[77]  G. Gudmundsson,et al.  Fortnightly variations in the flow velocity of Rutford Ice Stream, West Antarctica , 2006, Nature.

[78]  H. Fricker,et al.  Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice shelves , 2008 .

[79]  M. Simons,et al.  Modeling the elastic transmission of tidal stresses to great distances inland in channelized ice streams , 2014 .

[80]  H. Fricker,et al.  Tides on the Ross Ice Shelf observed with ICESat , 2005 .

[81]  Matt A. King,et al.  Diurnal and semidiurnal tide‐induced lateral movement of Ronne Ice Shelf, Antarctica , 2012 .

[82]  R. Thomas The Dynamics of Marine Ice Sheets , 1979 .

[83]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[84]  T. Murray,et al.  Rapid erosion, drumlin formation, and changing hydrology beneath an Antarctic ice stream , 2007 .

[85]  Scott Hensley,et al.  First deformation results using the NASA/JPL UAVSAR instrument , 2009, 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar.

[86]  R. Bindschadler,et al.  Application of image cross-correlation to the measurement of glacier velocity using satellite image data , 1992 .

[87]  E. King,et al.  Subglacial landforms beneath Rutford Ice Stream, Antarctica: detailed bed topography from ice-penetrating radar , 2015 .

[88]  Fernando S. Paolo,et al.  Volume loss from Antarctic ice shelves is accelerating , 2015, Science.

[89]  C. Schoof Ice sheet grounding line dynamics: Steady states, stability, and hysteresis , 2007 .

[90]  S. Hensley,et al.  Plastic bed beneath Hofsjökull Ice Cap, central Iceland, and the sensitivity of ice flow to surface meltwater flux , 2016, Journal of Glaciology.

[91]  J. Rice,et al.  Deformation‐induced melting in the margins of the West Antarctic ice streams , 2014 .

[92]  P. Rosen,et al.  Updated repeat orbit interferometry package released , 2004 .