Secure communication systems based on chaos in optically pumped spin-VCSELs.

We report on a master and slave configuration consisting of two optically pumped spin-vertical-cavity surface-emitting lasers for chaos synchronization and secure communication. Under appropriate conditions, high-quality chaos synchronization is achieved. We propose two encryption schemes, where either the pump magnitude or polarization is modulated. The results show that these allow for Gb/s transmission of secure data, but exhibit different features: one indicates that the message can be recovered by the total intensity, but not the polarization components, whereas the other shows that the message can be better or exclusively retrieved from the polarization components at high bit rates.

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  J Ohtsubo,et al.  Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback. , 2003, Optics letters.

[3]  Kun Qiu,et al.  Security-enhanced chaos communication with time-delay signature suppression and phase encryption. , 2016, Optics letters.

[4]  Maxi San Miguel,et al.  Polarization dynamics of optically pumped VCSELs , 1999 .

[5]  Yuncai Wang,et al.  Generation of wideband chaos with suppressed time-delay signature by delayed self-interference. , 2013, Optics express.

[6]  M. Sciamanna,et al.  Synchronization of polarization chaos from a free-running VCSEL. , 2016, Optics letters.

[7]  Lars Keuninckx,et al.  Encryption key distribution via chaos synchronization , 2017, Scientific Reports.

[8]  M. Lee,et al.  Enhanced chaos synchronization in unidirectionally coupled vertical-cavity surface-emitting semiconductor lasers with polarization-preserved injection. , 2008, Optics letters.

[9]  Nils C. Gerhardt,et al.  Spin-Controlled Vertical-Cavity Surface-Emitting Lasers , 2012 .

[10]  I. Kanter,et al.  An optical ultrafast random bit generator , 2010 .

[11]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[12]  W. Pan,et al.  Hybrid chaos-based communication system consisting of three chaotic semiconductor ring lasers. , 2013, Applied optics.

[13]  C. R. Mirasso,et al.  Open-versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers , 2002 .

[14]  Jan Danckaert,et al.  Polarization message encoding through vectorial chaos synchronization in vertical-cavity surface-emitting lasers. , 2003, Physical review letters.

[15]  Wei Pan,et al.  Enhanced Two-Channel Optical Chaotic Communication Using Isochronous Synchronization , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  San Miguel M,et al.  Light-polarization dynamics in surface-emitting semiconductor lasers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[17]  M. C. Soriano,et al.  Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers , 2013 .

[18]  Romain Modeste Nguimdo,et al.  Digital key for chaos communication performing time delay concealment. , 2011, Physical review letters.

[19]  C. Masoller,et al.  Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme , 2002, IEEE Photonics Technology Letters.

[20]  Yanhua Hong,et al.  Experimental study of time-delay signature of chaos in mutually coupled vertical-cavity surface-emitting lasers subject to polarization optical injection. , 2013, Optics express.

[21]  K. Alan Shore,et al.  Physics and applications of laser diode chaos , 2015 .

[22]  Nianqiang Li,et al.  High frequency continuous birefringence-induced oscillations in spin-polarized vertical-cavity surface-emitting lasers. , 2017, Optics letters.

[23]  Zach DeVito,et al.  Opt , 2017 .

[24]  D S Citrin,et al.  Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. , 2007, Optics letters.

[25]  Kun Qiu,et al.  Secure key distribution based on chaos synchronization of VCSELs subject to symmetric random-polarization optical injection. , 2017, Optics letters.

[26]  Wei Pan,et al.  Conceal time-delay signature of chaotic vertical-cavity surface-emitting lasers by variable-polarization optical feedback , 2011 .

[27]  Rainer Michalzik,et al.  Frequency tuning of polarization oscillations: Toward high-speed spin-lasers , 2016 .

[28]  Jiagui Wu,et al.  Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback. , 2009, Optics express.

[29]  Laurent Larger,et al.  Chaos-based communications at high bit rates using commercial fibre-optic links , 2005, Nature.

[30]  Cristina Masoller,et al.  Low-frequency fluctuations in vertical-cavity surface-emitting semiconductor lasers with optical feedback , 1999 .

[31]  Hugo Thienpont,et al.  Deterministic polarization chaos from a laser diode , 2013 .

[32]  K Alan Shore,et al.  Effect of chaos pass filtering on message decoding quality using chaotic external-cavity laser diodes. , 2004, Optics letters.

[33]  S Tang,et al.  Message encoding-decoding at 2.5 Gbits/s through synchronization of chaotic pulsing semiconductor lasers. , 2001, Optics letters.