Error estimates and a two grid scheme for approximating transmission eigenvalues

In this paper, using the linearization technique we write the Helmholtz transmission eigenvalue problem as an equivalent nonselfadjoint linear eigenvalue problem whose left-hand side term is a selfadjoint, continuous and coercive sesquilinear form. To solve the resulting nonselfadjoint eigenvalue problem, we give an $H^{2}$ conforming finite element discretization and establish a two grid discretization scheme. We present a complete error analysis for both discretization schemes, and theoretical analysis and numerical experiments show that the methods presented in this paper can efficiently compute real and complex transmission eigenvalues.

[1]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[2]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[3]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[4]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[5]  X. Hu,et al.  Two-Grid Methods for Maxwell Eigenvalue Problems , 2014, SIAM J. Numer. Anal..

[6]  Xia Ji,et al.  A Multigrid Method for Helmholtz Transmission Eigenvalue Problems , 2014, J. Sci. Comput..

[7]  Xia Ji,et al.  Algorithm 922: A Mixed Finite Element Method for Helmholtz Transmission Eigenvalues , 2012, TOMS.

[8]  Liwei Xu,et al.  Computation of Maxwell’s transmission eigenvalues and its applications in inverse medium problems , 2013 .

[9]  Aihui Zhou,et al.  Three-Scale Finite Element Discretizations for Quantum Eigenvalue Problems , 2007, SIAM J. Numer. Anal..

[10]  Bryan P. Rynne,et al.  The interior transmission problem and inverse scattering from inhomogeneous media , 1991 .

[11]  D. Colton,et al.  Analytical and computational methods for transmission eigenvalues , 2010 .

[12]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[13]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[14]  Fioralba Cakoni,et al.  The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..

[15]  Drossos Gintides,et al.  A computational method for the inverse transmission eigenvalue problem , 2013 .

[16]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[17]  D. Colton,et al.  The interior transmission problem , 2007 .

[18]  Gene H. Golub,et al.  Matrix computations , 1983 .

[19]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[20]  K. Kolman,et al.  A Two-Level Method for Nonsymmetric Eigenvalue Problems , 2005 .

[21]  Tong Zhang,et al.  Two-Sided Arnoldi and Nonsymmetric Lanczos Algorithms , 2002, SIAM J. Matrix Anal. Appl..

[22]  Jiguang Sun Iterative Methods for Transmission Eigenvalues , 2011, SIAM J. Numer. Anal..

[23]  F. Chatelin The Spectral Approximation of Linear Operators with Applications to the Computation of Eigenelements of Differential and Integral Operators , 1981 .

[24]  A. Kirsch On the existence of transmission eigenvalues , 2009 .

[25]  Hai Bi,et al.  The Shifted-Inverse Iteration Based on the Multigrid Discretizations for Eigenvalue Problems , 2015, SIAM J. Sci. Comput..

[26]  R. Bolstein,et al.  Expansions in eigenfunctions of selfadjoint operators , 1968 .

[27]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[28]  Jiguang Sun,et al.  Finite Element Methods for Maxwell's Transmission Eigenvalues , 2012, SIAM J. Sci. Comput..

[29]  D. Colton,et al.  Transmission eigenvalues and the nondestructive testing of dielectrics , 2008 .

[30]  Jiguang Sun,et al.  Error Analysis for the Finite Element Approximation of Transmission Eigenvalues , 2014, Comput. Methods Appl. Math..

[31]  John Sylvester,et al.  Transmission Eigenvalues , 2008, SIAM J. Math. Anal..

[32]  Jie Shen,et al.  A Spectral-Element Method for Transmission Eigenvalue Problems , 2013, J. Sci. Comput..

[33]  Jinchao Xu A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .

[34]  H. Haddar,et al.  On the existence of transmission eigenvalues in an inhomogeneous medium , 2009 .