Compressive sensing off the grid

We consider the problem of estimating the frequency components of a mixture of s complex sinusoids from a random subset of n regularly spaced samples. Unlike previous work in compressive sensing, the frequencies are not assumed to lie on a grid, but can assume any values in the normalized frequency domain [0, 1]. We propose an atomic norm minimization approach to exactly recover the unobserved samples, which is then followed by any linear prediction method to identify the frequency components. We reformulate the atomic norm minimization as an exact semidefinite program. By constructing a dual certificate polynomial using random kernels, we show that roughly s log s log n random samples are sufficient to guarantee the exact frequency estimation with high probability, provided the frequencies are well separated. Extensive numerical experiments are performed to illustrate the effectiveness of the proposed method. Our approach avoids the basis mismatch issue arising from discretization by working directly on the continuous parameter space. Potential impact on both compressive sensing and line spectral estimation, in particular implications in sub-Nyquist sampling and superresolution, are discussed.

[1]  Jian Li,et al.  New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data , 2011, IEEE Transactions on Signal Processing.

[2]  Emmanuel J. Candès,et al.  Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..

[3]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[4]  M. Fazel,et al.  Reweighted nuclear norm minimization with application to system identification , 2010, Proceedings of the 2010 American Control Conference.

[5]  Yonina C. Eldar,et al.  Xampling: Signal Acquisition and Processing in Union of Subspaces , 2009, IEEE Transactions on Signal Processing.

[6]  Thomas Strohmer,et al.  Compressed Remote Sensing of Sparse Objects , 2009, SIAM J. Imaging Sci..

[7]  Jean-Jacques Fuchs,et al.  Sparsity and uniqueness for some specific under-determined linear systems , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[8]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[9]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[10]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[11]  Thomas Strohmer,et al.  High-Resolution Radar via Compressed Sensing , 2008, IEEE Transactions on Signal Processing.

[12]  Etienne de Klerk,et al.  On the Convergence of the Central Path in Semidefinite Optimization , 2002, SIAM J. Optim..

[13]  Bin Guo,et al.  Coherence, Compressive Sensing, and Random Sensor Arrays , 2011, IEEE Antennas and Propagation Magazine.

[14]  C. Carathéodory Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .

[15]  Michael L. Overton,et al.  Complementarity and nondegeneracy in semidefinite programming , 1997, Math. Program..

[16]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .

[17]  Petre Stoica,et al.  Sparse Estimation of Spectral Lines: Grid Selection Problems and Their Solutions , 2012, IEEE Transactions on Signal Processing.

[18]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[19]  A. Schaeffer Inequalities of A. Markoff and S. Bernstein for polynomials and related functions , 1941 .

[20]  Adel Javanmard,et al.  Localization from incomplete noisy distance measurements , 2011, ISIT.

[21]  C. Carathéodory,et al.  Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .

[22]  Benjamin Recht,et al.  A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..

[23]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[24]  H. Rauhut Random Sampling of Sparse Trigonometric Polynomials , 2005, math/0512642.

[25]  Petre Stoica,et al.  SPICE and LIKES: Two hyperparameter-free methods for sparse-parameter estimation , 2012, Signal Process..

[26]  Thomas Strohmer,et al.  General Deviants: An Analysis of Perturbations in Compressed Sensing , 2009, IEEE Journal of Selected Topics in Signal Processing.

[27]  Kim-Chuan Toh,et al.  SDPT3 — a Matlab software package for semidefinite-quadratic-linear programming, version 3.0 , 2001 .

[28]  Yonina C. Eldar,et al.  From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals , 2009, IEEE Journal of Selected Topics in Signal Processing.

[29]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[30]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[31]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[32]  B. Dumitrescu Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .

[33]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[34]  Zhi-Quan Luo,et al.  Superlinear Convergence of a Symmetric Primal-Dual Path Following Algorithm for Semidefinite Programming , 1998, SIAM J. Optim..

[35]  R. Baraniuk,et al.  Compressive Radar Imaging , 2007, 2007 IEEE Radar Conference.

[36]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[37]  A. Robert Calderbank,et al.  Sensitivity to Basis Mismatch in Compressed Sensing , 2011, IEEE Trans. Signal Process..

[38]  Michael B. Wakin,et al.  A manifold lifting algorithm for multi-view compressive imaging , 2009, 2009 Picture Coding Symposium.

[39]  Robert D. Nowak,et al.  Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels , 2010, Proceedings of the IEEE.

[40]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[41]  Eero P. Simoncelli,et al.  Recovery of Sparse Translation-Invariant Signals With Continuous Basis Pursuit , 2011, IEEE Transactions on Signal Processing.

[42]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[43]  Susan K. Avery,et al.  Estimation of randomly sampled sinusoids in additive noise , 1988, IEEE Trans. Acoust. Speech Signal Process..

[44]  Gongguo Tang,et al.  Atomic Norm Denoising With Applications to Line Spectral Estimation , 2012, IEEE Transactions on Signal Processing.

[45]  Robert Nowak,et al.  Improved Approach to Lidar Airport Obstruction Surveying Using Full- Waveform Data , 2009 .

[46]  Katya Scheinberg,et al.  Interior Point Trajectories in Semidefinite Programming , 1998, SIAM J. Optim..

[47]  M. Ledoux The concentration of measure phenomenon , 2001 .

[48]  Sergiy A. Vorobyov,et al.  Spectral Estimation from Undersampled Data: Correlogram and Model-Based Least Squares , 2012, ArXiv.

[49]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[50]  Hao He,et al.  Spectral Analysis of Nonuniformly Sampled Data: A New Approach Versus the Periodogram , 2009, IEEE Transactions on Signal Processing.

[51]  A. Megretski Positivity of trigonometric polynomials , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[52]  A. Willsky,et al.  The Convex algebraic geometry of linear inverse problems , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[53]  Etienne de Klerk,et al.  Initialization in semidefinite programming via a self-dual skew-symmetric embedding , 1997, Oper. Res. Lett..

[54]  Lieven Vandenberghe,et al.  Discrete Transforms, Semidefinite Programming, and Sum-of-Squares Representations of Nonnegative Polynomials , 2006, SIAM J. Optim..

[55]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[56]  Petre Stoica List of references on spectral line analysis , 1993, Signal Process..

[57]  Otto Toeplitz,et al.  Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen , 1911 .

[58]  M. Vetterli,et al.  Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.

[59]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[60]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[61]  D. Donoho,et al.  Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..