Compressive sensing off the grid
暂无分享,去创建一个
Parikshit Shah | Gongguo Tang | Benjamin Recht | Badri Narayan Bhaskar | B. Recht | Gongguo Tang | P. Shah
[1] Jian Li,et al. New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data , 2011, IEEE Transactions on Signal Processing.
[2] Emmanuel J. Candès,et al. Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..
[3] E.J. Candes,et al. An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.
[4] M. Fazel,et al. Reweighted nuclear norm minimization with application to system identification , 2010, Proceedings of the 2010 American Control Conference.
[5] Yonina C. Eldar,et al. Xampling: Signal Acquisition and Processing in Union of Subspaces , 2009, IEEE Transactions on Signal Processing.
[6] Thomas Strohmer,et al. Compressed Remote Sensing of Sparse Objects , 2009, SIAM J. Imaging Sci..
[7] Jean-Jacques Fuchs,et al. Sparsity and uniqueness for some specific under-determined linear systems , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[8] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[9] E. Candès,et al. Sparsity and incoherence in compressive sampling , 2006, math/0611957.
[10] Stephen Becker,et al. Quantum state tomography via compressed sensing. , 2009, Physical review letters.
[11] Thomas Strohmer,et al. High-Resolution Radar via Compressed Sensing , 2008, IEEE Transactions on Signal Processing.
[12] Etienne de Klerk,et al. On the Convergence of the Central Path in Semidefinite Optimization , 2002, SIAM J. Optim..
[13] Bin Guo,et al. Coherence, Compressive Sensing, and Random Sensor Arrays , 2011, IEEE Antennas and Propagation Magazine.
[14] C. Carathéodory. Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .
[15] Michael L. Overton,et al. Complementarity and nondegeneracy in semidefinite programming , 1997, Math. Program..
[16] Marco F. Duarte,et al. Spectral compressive sensing , 2013 .
[17] Petre Stoica,et al. Sparse Estimation of Spectral Lines: Grid Selection Problems and Their Solutions , 2012, IEEE Transactions on Signal Processing.
[18] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[19] A. Schaeffer. Inequalities of A. Markoff and S. Bernstein for polynomials and related functions , 1941 .
[20] Adel Javanmard,et al. Localization from incomplete noisy distance measurements , 2011, ISIT.
[21] C. Carathéodory,et al. Über den zusammenhang der extremen von harmonischen funktionen mit ihren koeffizienten und über den picard-landau’schen satz , 1911 .
[22] Benjamin Recht,et al. A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..
[23] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[24] H. Rauhut. Random Sampling of Sparse Trigonometric Polynomials , 2005, math/0512642.
[25] Petre Stoica,et al. SPICE and LIKES: Two hyperparameter-free methods for sparse-parameter estimation , 2012, Signal Process..
[26] Thomas Strohmer,et al. General Deviants: An Analysis of Perturbations in Compressed Sensing , 2009, IEEE Journal of Selected Topics in Signal Processing.
[27] Kim-Chuan Toh,et al. SDPT3 — a Matlab software package for semidefinite-quadratic-linear programming, version 3.0 , 2001 .
[28] Yonina C. Eldar,et al. From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals , 2009, IEEE Journal of Selected Topics in Signal Processing.
[29] R.G. Baraniuk,et al. Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.
[30] Tapan K. Sarkar,et al. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..
[31] David Gross,et al. Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.
[32] B. Dumitrescu. Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .
[33] Emmanuel J. Candès,et al. Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.
[34] Zhi-Quan Luo,et al. Superlinear Convergence of a Symmetric Primal-Dual Path Following Algorithm for Semidefinite Programming , 1998, SIAM J. Optim..
[35] R. Baraniuk,et al. Compressive Radar Imaging , 2007, 2007 IEEE Radar Conference.
[36] Petre Stoica,et al. Spectral Analysis of Signals , 2009 .
[37] A. Robert Calderbank,et al. Sensitivity to Basis Mismatch in Compressed Sensing , 2011, IEEE Trans. Signal Process..
[38] Michael B. Wakin,et al. A manifold lifting algorithm for multi-view compressive imaging , 2009, 2009 Picture Coding Symposium.
[39] Robert D. Nowak,et al. Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels , 2010, Proceedings of the IEEE.
[40] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[41] Eero P. Simoncelli,et al. Recovery of Sparse Translation-Invariant Signals With Continuous Basis Pursuit , 2011, IEEE Transactions on Signal Processing.
[42] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[43] Susan K. Avery,et al. Estimation of randomly sampled sinusoids in additive noise , 1988, IEEE Trans. Acoust. Speech Signal Process..
[44] Gongguo Tang,et al. Atomic Norm Denoising With Applications to Line Spectral Estimation , 2012, IEEE Transactions on Signal Processing.
[45] Robert Nowak,et al. Improved Approach to Lidar Airport Obstruction Surveying Using Full- Waveform Data , 2009 .
[46] Katya Scheinberg,et al. Interior Point Trajectories in Semidefinite Programming , 1998, SIAM J. Optim..
[47] M. Ledoux. The concentration of measure phenomenon , 2001 .
[48] Sergiy A. Vorobyov,et al. Spectral Estimation from Undersampled Data: Correlogram and Model-Based Least Squares , 2012, ArXiv.
[49] Justin K. Romberg,et al. Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.
[50] Hao He,et al. Spectral Analysis of Nonuniformly Sampled Data: A New Approach Versus the Periodogram , 2009, IEEE Transactions on Signal Processing.
[51] A. Megretski. Positivity of trigonometric polynomials , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[52] A. Willsky,et al. The Convex algebraic geometry of linear inverse problems , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[53] Etienne de Klerk,et al. Initialization in semidefinite programming via a self-dual skew-symmetric embedding , 1997, Oper. Res. Lett..
[54] Lieven Vandenberghe,et al. Discrete Transforms, Semidefinite Programming, and Sum-of-Squares Representations of Nonnegative Polynomials , 2006, SIAM J. Optim..
[55] Joel A. Tropp,et al. User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..
[56] Petre Stoica. List of references on spectral line analysis , 1993, Signal Process..
[57] Otto Toeplitz,et al. Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen , 1911 .
[58] M. Vetterli,et al. Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.
[59] Pablo A. Parrilo,et al. The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.
[60] Dmitry M. Malioutov,et al. A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.
[61] D. Donoho,et al. Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[62] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..