Linear quadratic regulator design for power system stabilizer using biogeography based optimization method

In this paper biogeography based optimization algorithm (BBO) is utilized to propose a new control method (BBO-OPSS) which optimizes the state weighting matrix (Q) and the control weighting matrix (R) of the linear quadratic regulator (LQR). The method is used to find the optimal design of the power system stabilizer (PSS) for a single machine infinite bus system operating at different loading conditions. Then, the proposed controller results will be compared with conventional designed power system stabilizer (CPSS) and normal optimal power system stabilizer (OPSS) (where the weighting matrices are generated by trial and error) to show the effectiveness and robustness of the proposed algorithm.

[1]  Luigi Fortuna,et al.  Evolutionary Optimization Algorithms , 2001 .

[2]  M. A. Abido,et al.  Robust design of multimachine power system stabilizers using simulated annealing , 2000 .

[3]  H. A. Shayanfar,et al.  Robust PSS design using Chaotic Optimization Algorithm for a multimachine power system , 2009, 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.

[4]  A.A. Abido,et al.  Particle swarm optimization for multimachine power system stabilizer design , 2001, 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262).

[5]  Y Wang THE DETERMINATION OF WEIGHTING MATRICES IN LQ OPTIMAL CONTROL SYSTEMS , 1992 .

[6]  Glauco N. Taranto,et al.  Simultaneous tuning of power system damping controllers using genetic algorithms , 2000 .

[7]  M. A. Abido,et al.  Coordinated design of a PSS and an SVC-based controller to enhance power system stability , 2003 .

[8]  Chi-Jui Wu,et al.  Damping of power system oscillations with output feedback and strip eigenvalue assignment , 1995 .

[9]  Ravindra Arora,et al.  IEEE Press Series on Power Engineering , 2011 .

[10]  J. Talaq,et al.  Unit commitment by biogeography based optimization method , 2012, 2012 16th IEEE Mediterranean Electrotechnical Conference.

[11]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .

[12]  M. A. Abido,et al.  Parameter optimization of multimachine power system stabilizers using genetic local search , 2001 .

[13]  Jawad Talaq,et al.  Optimal power system stabilizers for multi machine systems , 2012 .

[14]  Manisha Dubey,et al.  Design of Genetic-Algorithm Based Robust Power System Stabilizer , 2008 .

[15]  Zhao Hui,et al.  Optimal Design of Power System Stabilizer Using Particle Swarm Optimization , 2006 .

[16]  Hisham M. Soliman,et al.  PSO-BASED POWER SYSTEM STABILIZER FOR MINIMAL OVERSHOOT AND CONTROL CONSTRAINTS , 2008 .

[17]  M. A. Abido Optimal des'ign of Power System Stabilizers Using Particle Swarm Opt'imization , 2002, IEEE Power Engineering Review.

[18]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[19]  Narayana Prasad Padhy,et al.  Robust Power System Stabilizer Design Using Particle Swarm Optimization Technique , 2008 .

[20]  Babu Narayanan,et al.  POWER SYSTEM STABILITY AND CONTROL , 2015 .