Principles and applications of halogen bonding in medicinal chemistry and chemical biology.

Halogen bonding has been known in material science for decades, but until recently, halogen bonds in protein-ligand interactions were largely the result of serendipitous discovery rather than rational design. In this Perspective, we provide insights into the phenomenon of halogen bonding, with special focus on its role in drug discovery. We summarize the theoretical background defining its strength and directionality, provide a systematic analysis of its occurrence and interaction geometries in protein-ligand complexes, and give recent examples where halogen bonding has been successfully harnessed for lead identification and optimization. In light of these data, we discuss the potential and limitations of exploiting halogen bonds for molecular recognition and rational drug design.

[1]  Jindřich Fanfrlík,et al.  Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds , 2013, Journal of Molecular Modeling.

[2]  Rainer Wilcken,et al.  Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2 , 2012, Proceedings of the National Academy of Sciences.

[3]  Rainer Wilcken,et al.  Kinetic mechanism of p53 oncogenic mutant aggregation and its inhibition , 2012, Proceedings of the National Academy of Sciences.

[4]  Markus O. Zimmermann,et al.  Using halogen bonds to address the protein backbone: a systematic evaluation , 2012, Journal of Computer-Aided Molecular Design.

[5]  Thelma Thompson,et al.  Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization , 2012, Proceedings of the National Academy of Sciences.

[6]  A. Rappé,et al.  Scalable Anisotropic Shape and Electrostatic Models for Biological Bromine Halogen Bonds. , 2012, Journal of chemical theory and computation.

[7]  Timothy Clark,et al.  Polarization-induced σ-holes and hydrogen bonding , 2012, Journal of Molecular Modeling.

[8]  Timothy Clark,et al.  Predicting the Sites and Energies of Noncovalent Intermolecular Interactions Using Local Properties , 2012, J. Chem. Inf. Model..

[9]  Patric Schyman,et al.  Treatment of Halogen Bonding in the OPLS-AA Force Field; Application to Potent Anti-HIV Agents. , 2012, Journal of chemical theory and computation.

[10]  Weizhou Wang,et al.  Communication: Competition between π···π interaction and halogen bond in solution: a combined 13C NMR and density functional theory study. , 2012, The Journal of chemical physics.

[11]  S. Zographos,et al.  The σ‐Hole Phenomenon of Halogen Atoms Forms the Structural Basis of the Strong Inhibitory Potency of C5 Halogen Substituted Glucopyranosyl Nucleosides towards Glycogen Phosphorylase b , 2012, ChemMedChem.

[12]  Markus O. Zimmermann,et al.  Halogen-Enriched Fragment Libraries as Leads for Drug Rescue of Mutant p53 , 2012, Journal of the American Chemical Society.

[13]  Pavel Hobza,et al.  On Extension of the Current Biomolecular Empirical Force Field for the Description of Halogen Bonds. , 2012, Journal of chemical theory and computation.

[14]  Mahmoud A A Ibrahim,et al.  AMBER empirical potential describes the geometry and energy of noncovalent halogen interactions better than advanced semiempirical quantum mechanical method PM6-DH2X. , 2012, The journal of physical chemistry. B.

[15]  W. Jin,et al.  Phosphorescent co-crystal assembled by 1,4-diiodotetrafluorobenzene with carbazole based on C–I⋯π halogen bonding , 2012 .

[16]  D. Manna,et al.  Regioselective deiodination of thyroxine by iodothyronine deiodinase mimics: an unusual mechanistic pathway involving cooperative chalcogen and halogen bonding. , 2012, Journal of the American Chemical Society.

[17]  Kasper Harpsøe,et al.  Intersubunit Bridge Formation Governs Agonist Efficacy at Nicotinic Acetylcholine α4β2 Receptors , 2011, The Journal of Biological Chemistry.

[18]  Doriano Fabbro,et al.  7,8-Dichloro-1-oxo-β-carbolines as a Versatile Scaffold for the Development of Potent and Selective Kinase Inhibitors with Unusual Binding Modes , 2011, Journal of medicinal chemistry.

[19]  William L Jorgensen,et al.  Computationally-guided optimization of a docking hit to yield catechol diethers as potent anti-HIV agents. , 2011, Journal of medicinal chemistry.

[20]  Martin Stahl,et al.  Rationalizing Tight Ligand Binding through Cooperative Interaction Networks , 2011, J. Chem. Inf. Model..

[21]  D. Quiñonero,et al.  Substituent effects in halogen bonding complexes between aromatic donors and acceptors: a comprehensive ab initio study. , 2011, Physical chemistry chemical physics : PCCP.

[22]  Nobuo Shimma,et al.  Halogen Bonding at the Active Sites of Human Cathepsin L and MEK1 Kinase: Efficient Interactions in Different Environments , 2011, ChemMedChem.

[23]  Maurizio Sironi,et al.  Halogen bonding in ligand-receptor systems in the framework of classical force fields. , 2011, Physical chemistry chemical physics : PCCP.

[24]  Pierangelo Metrangolo,et al.  The fluorine atom as a halogen bond donor, viz. a positive site , 2011 .

[25]  Gerhard Klebe,et al.  DSX: A Knowledge-Based Scoring Function for the Assessment of Protein-Ligand Complexes , 2011, J. Chem. Inf. Model..

[26]  Mahmoud A. A. Ibrahim,et al.  Performance Assessment of Semiempirical Molecular Orbital Methods in Describing Halogen Bonding: Quantum Mechanical and Quantum Mechanical/Molecular Mechanical-Molecular Dynamics Study , 2011, J. Chem. Inf. Model..

[27]  Kevin A Ford,et al.  Novel mechanism for dehalogenation and glutathione conjugation of dihalogenated anilines in human liver microsomes: evidence for ipso glutathione addition. , 2011, Chemical research in toxicology.

[28]  Pavel Hobza,et al.  Strength and Character of Halogen Bonds in Protein–Ligand Complexes , 2011 .

[29]  Mahmoud A. A. Ibrahim,et al.  Molecular mechanical study of halogen bonding in drug discovery , 2011, J. Comput. Chem..

[30]  Pierangelo Metrangolo,et al.  Fluorine-Centered Halogen Bonding: A Factor in Recognition Phenomena and Reactivity , 2011 .

[31]  R. Oswald,et al.  Mechanism of AMPA Receptor Activation by Partial Agonists , 2011, The Journal of Biological Chemistry.

[32]  Pierangelo Metrangolo,et al.  Halogen Bonding in Halocarbon—Protein Complexes: A Structural Survey , 2011 .

[33]  Jinhua J. Song,et al.  The Growing Impact of Catalysis in the Pharmaceutical Industry , 2011 .

[34]  Weiliang Zhu,et al.  Utilization of halogen bond in lead optimization: a case study of rational design of potent phosphodiesterase type 5 (PDE5) inhibitors. , 2011, Journal of medicinal chemistry.

[35]  Barbara Kirchner,et al.  Addressing Methionine in Molecular Design through Directed Sulfur-Halogen Bonds. , 2011, Journal of chemical theory and computation.

[36]  Michal Otyepka,et al.  Semiempirical quantum mechanical method PM6-DH2X describes the geometry and energetics of CK2-inhibitor complexes involving halogen bonds well, while the empirical potential fails. , 2011, The journal of physical chemistry. B.

[37]  L. Djakovitch,et al.  Recent Advances in the Synthesis of N-Containing Heteroaromatics via Heterogeneously Transition Metal Catalysed Cross-Coupling Reactions , 2011, Molecules.

[38]  M. Hann Molecular obesity, potency and other addictions in drug discovery , 2011 .

[39]  Lirong Wang,et al.  Residue Preference Mapping of Ligand Fragments in the Protein Data Bank , 2011, J. Chem. Inf. Model..

[40]  Pavel Hobza,et al.  A halogen-bonding correction for the semiempirical PM6 method , 2011 .

[41]  Pierangelo Metrangolo,et al.  Halogen bonding in halocarbon-protein complexes: a structural survey. , 2011, Chemical Society reviews.

[42]  Alexander Dömling,et al.  The structure-based design of Mdm2/Mdmx-p53 inhibitors gets serious. , 2011, Angewandte Chemie.

[43]  Jindřich Fanfrlík,et al.  Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine , 2011, Journal of molecular modeling.

[44]  S. Grimme Density functional theory with London dispersion corrections , 2011 .

[45]  M. Mayer,et al.  Binding site and ligand flexibility revealed by high resolution crystal structures of GluK1 competitive antagonists , 2011, Neuropharmacology.

[46]  Elizabeth A Lunney,et al.  Kinase inhibition that hinges on halogen bonds. , 2011, Chemistry & biology.

[47]  Damian Szklarczyk,et al.  Specific CLK Inhibitors from a Novel Chemotype for Regulation of Alternative Splicing , 2011, Chemistry & biology.

[48]  O. Hucke,et al.  Combined X-ray, NMR, and Kinetic Analyses Reveal Uncommon Binding Characteristics of the Hepatitis C Virus NS3-NS4A Protease Inhibitor BI 201335* , 2011, The Journal of Biological Chemistry.

[49]  François Diederich,et al.  Systematic investigation of halogen bonding in protein-ligand interactions. , 2011, Angewandte Chemie.

[50]  Timothy Clark,et al.  Directional Weak Intermolecular Interactions: σ-Hole Bonding , 2010 .

[51]  Peter Politzer,et al.  Directional tendencies of halogen and hydrogen bonds , 2010 .

[52]  L. Johnson,et al.  Halogen bonds form the basis for selective P-TEFb inhibition by DRB. , 2010, Chemistry & biology.

[53]  J. Murray,et al.  Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. , 2010, Physical chemistry chemical physics : PCCP.

[54]  C. A. Bayse,et al.  Is halogen bonding the basis for iodothyronine deiodinase activity? , 2010, Inorganic chemistry.

[55]  Michael J. Keiser,et al.  Complementarity Between a Docking and a High-Throughput Screen in Discovering New Cruzain Inhibitors† , 2010, Journal of medicinal chemistry.

[56]  R. Kellogg,et al.  Practical Aspects of Carbon—Carbon Cross-Coupling Reactions Using Heteroarenes , 2010 .

[57]  Weiliang Zhu,et al.  Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design. , 2010, Physical chemistry chemical physics : PCCP.

[58]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[59]  Gerhard Klebe,et al.  Non-additivity of functional group contributions in protein-ligand binding: a comprehensive study by crystallography and isothermal titration calorimetry. , 2010, Journal of molecular biology.

[60]  B. Kuhn,et al.  A Medicinal Chemist’s Guide to Molecular Interactions , 2010, Journal of medicinal chemistry.

[61]  G. Klebe,et al.  Enhancement of hydrophobic interactions and hydrogen bond strength by cooperativity: synthesis, modeling, and molecular dynamics simulations of a congeneric series of thrombin inhibitors. , 2010, Journal of medicinal chemistry.

[62]  Y. Sasson Formation of Carbon–Halogen Bonds (Cl, Br, I) , 2009 .

[63]  Weiliang Zhu,et al.  C-X...H contacts in biomolecular systems: how they contribute to protein-ligand binding affinity. , 2009, The journal of physical chemistry. B.

[64]  J. Stephen Binkley,et al.  Theoretical models incorporating electron correlation , 2009 .

[65]  Peter Politzer,et al.  Expansion of the σ-hole concept , 2009, Journal of molecular modeling.

[66]  M. Waring Defining optimum lipophilicity and molecular weight ranges for drug candidates-Molecular weight dependent lower logD limits based on permeability. , 2009, Bioorganic & medicinal chemistry letters.

[67]  Yong-Jun Jiang,et al.  Ab initio calculations on halogen‐bonded complexes and comparison with density functional methods , 2009, J. Comput. Chem..

[68]  Weiliang Zhu,et al.  Halogen bonding--a novel interaction for rational drug design? , 2009, Journal of medicinal chemistry.

[69]  P Shing Ho,et al.  Halogen bonds as orthogonal molecular interactions to hydrogen bonds. , 2009, Nature chemistry.

[70]  I. Arčon,et al.  X-ray absorption in atomic iodine in theK-edge region , 2009 .

[71]  György M. Keserü,et al.  The influence of lead discovery strategies on the properties of drug candidates , 2009, Nature Reviews Drug Discovery.

[72]  Robert Abel,et al.  Protein side-chain dynamics and residual conformational entropy. , 2009, Journal of the American Chemical Society.

[73]  Pavel Hobza,et al.  Br···O Complexes as Probes of Factors Affecting Halogen Bonding: Interactions of Bromobenzenes and Bromopyrimidines with Acetone. , 2009, Journal of chemical theory and computation.

[74]  J. Warmus,et al.  2-Alkylamino- and alkoxy-substituted 2-amino-1,3,4-oxadiazoles-O-Alkyl benzohydroxamate esters replacements retain the desired inhibition and selectivity against MEK (MAP ERK kinase). , 2008, Bioorganic & medicinal chemistry letters.

[75]  P. Beer,et al.  Halogen Bonding in Supramolecular Chemistry. , 2008, Chemical reviews.

[76]  G. Sheldrick,et al.  A magic triangle for experimental phasing of macromolecules. , 2008, Acta crystallographica. Section D, Biological crystallography.

[77]  J. Hughes,et al.  Physiochemical drug properties associated with in vivo toxicological outcomes. , 2008, Bioorganic & medicinal chemistry letters.

[78]  S. Ekins,et al.  Halogenated ligands and their interactions with amino acids: implications for structure-activity and structure-toxicity relationships. , 2008, Journal of molecular graphics & modelling.

[79]  Frank M Boeckler,et al.  Targeted rescue of a destabilized mutant of p53 by an in silico screened drug , 2008, Proceedings of the National Academy of Sciences.

[80]  M. Gleeson Generation of a set of simple, interpretable ADMET rules of thumb. , 2008, Journal of medicinal chemistry.

[81]  Pavel Hobza,et al.  Investigations into the Nature of Halogen Bonding Including Symmetry Adapted Perturbation Theory Analyses. , 2008, Journal of chemical theory and computation.

[82]  P. Leeson,et al.  The influence of drug-like concepts on decision-making in medicinal chemistry , 2007, Nature Reviews Drug Discovery.

[83]  J. Stewart Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements , 2007, Journal of molecular modeling.

[84]  M. Gilson,et al.  Calculation of protein-ligand binding affinities. , 2007, Annual review of biophysics and biomolecular structure.

[85]  P Shing Ho,et al.  Directing macromolecular conformation through halogen bonds , 2007, Proceedings of the National Academy of Sciences.

[86]  G. Collingridge,et al.  Synthesis and pharmacological characterization of N3-substituted willardiine derivatives: role of the substituent at the 5-position of the uracil ring in the development of highly potent and selective GLUK5 kainate receptor antagonists. , 2007, Journal of medicinal chemistry.

[87]  F Peter Guengerich,et al.  Complex reactions catalyzed by cytochrome P450 enzymes. , 2007, Biochimica et biophysica acta.

[88]  Peter Politzer,et al.  An overview of halogen bonding , 2007, Journal of molecular modeling.

[89]  Timothy Clark,et al.  Halogen bonding: the σ-hole , 2007 .

[90]  Joseph B. Moon,et al.  Design, synthesis, and crystal structure of hydroxyethyl secondary amine-based peptidomimetic inhibitors of human beta-secretase. , 2007, Journal of medicinal chemistry.

[91]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[92]  A. Fersht,et al.  Structural basis for understanding oncogenic p53 mutations and designing rescue drugs , 2006, Proceedings of the National Academy of Sciences.

[93]  C. E. Peishoff,et al.  A critical assessment of docking programs and scoring functions. , 2006, Journal of medicinal chemistry.

[94]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[95]  Lucas Bleicher,et al.  Structural rearrangements in the thyroid hormone receptor hinge domain and their putative role in the receptor function. , 2006, Journal of molecular biology.

[96]  W. R. Bishop,et al.  Enhanced FTase activity achieved via piperazine interaction with catalytic zinc. , 2006, Bioorganic & medicinal chemistry letters.

[97]  Christophe Meyer,et al.  Crystal structures for HIV-1 reverse transcriptase in complexes with three pyridinone derivatives: a new class of non-nucleoside inhibitors effective against a broad range of drug-resistant strains. , 2005, Journal of medicinal chemistry.

[98]  Marcel L Verdonk,et al.  General and targeted statistical potentials for protein–ligand interactions , 2005, Proteins.

[99]  S. Curry,et al.  Structural basis of the drug-binding specificity of human serum albumin. , 2005, Journal of molecular biology.

[100]  François Diederich,et al.  Orthogonal multipolar interactions in structural chemistry and biology. , 2005, Angewandte Chemie.

[101]  Maxwell D Cummings,et al.  1,4-Benzodiazepine-2,5-diones as small molecule antagonists of the HDM2-p53 interaction: discovery and SAR. , 2005, Bioorganic & medicinal chemistry letters.

[102]  Maxwell D Cummings,et al.  Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. , 2005, Journal of medicinal chemistry.

[103]  Eric Westhof,et al.  Halogen bonds in biological molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[105]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[106]  D. Power,et al.  High Resolution Crystal Structures of Piscine Transthyretin Reveal Different Binding Modes for Triiodothyronine and Thyroxine* , 2004, Journal of Biological Chemistry.

[107]  M. Karplus,et al.  The origin of protein sidechain order parameter distributions. , 2004, Journal of the American Chemical Society.

[108]  C. Nguyen,et al.  3-iodo-4-phenoxypyridinones (IOPY's), a new family of highly potent non-nucleoside inhibitors of HIV-1 reverse transcriptase. , 2003, Bioorganic & medicinal chemistry letters.

[109]  H. Kümmel,et al.  A BIOGRAPHY OF THE COUPLED CLUSTER METHOD , 2003 .

[110]  M. Mayer,et al.  Structural basis for partial agonist action at ionotropic glutamate receptors , 2003, Nature Neuroscience.

[111]  E. Gouaux,et al.  Probing the function, conformational plasticity, and dimer-dimer contacts of the GluR2 ligand-binding core: studies of 5-substituted willardiines and GluR2 S1S2 in the crystal. , 2003, Biochemistry.

[112]  Gerhard Klebe,et al.  Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. , 2003, Journal of molecular biology.

[113]  Gerhard Klebe,et al.  Utilising structural knowledge in drug design strategies: applications using Relibase. , 2003, Journal of molecular biology.

[114]  B. Matthews,et al.  A model binding site for testing scoring functions in molecular docking. , 2002, Journal of molecular biology.

[115]  Ruth Nussinov,et al.  Close‐Range Electrostatic Interactions in Proteins , 2002, Chembiochem : a European journal of chemical biology.

[116]  H. Berman,et al.  Electronic Reprint Biological Crystallography the Protein Data Bank Biological Crystallography the Protein Data Bank , 2022 .

[117]  J. Janc,et al.  Engineering inhibitors highly selective for the S1 sites of Ser190 trypsin-like serine protease drug targets. , 2002, Chemistry & biology.

[118]  Paul M. G. Curmi,et al.  Twist and shear in β-sheets and β-ribbons , 2002 .

[119]  T. Steiner The hydrogen bond in the solid state. , 2002, Angewandte Chemie.

[120]  Tudor I. Oprea,et al.  Is There a Difference between Leads and Drugs? A Historical Perspective , 2001, J. Chem. Inf. Comput. Sci..

[121]  P. Metrangolo,et al.  Halogen bonding: a paradigm in supramolecular chemistry. , 2001, Chemistry.

[122]  J. Richardson,et al.  The penultimate rotamer library , 2000, Proteins.

[123]  Richard J. Marhöfer,et al.  Molecular Graphics - Trends and Perspectives , 2000 .

[124]  G. Klebe,et al.  Knowledge-based scoring function to predict protein-ligand interactions. , 2000, Journal of molecular biology.

[125]  W. A. Murray,et al.  Amiodarone for resuscitation after out-of-hospital cardiac arrest due to ventricular fibrillation. , 1999, The New England journal of medicine.

[126]  A. D. Watson,et al.  Metal-Based X-ray Contrast Media. , 1999, Chemical reviews.

[127]  Y. Martin,et al.  A general and fast scoring function for protein-ligand interactions: a simplified potential approach. , 1999, Journal of medicinal chemistry.

[128]  Christopher W. Murray,et al.  Empirical scoring functions. II. The testing of an empirical scoring function for the prediction of ligand-receptor binding affinities and the use of Bayesian regression to improve the quality of the model , 1998, J. Comput. Aided Mol. Des..

[129]  J. McKerrow,et al.  Cysteine Protease Inhibitors Cure an Experimental Trypanosoma cruzi Infection , 1998, The Journal of experimental medicine.

[130]  B. Berman,et al.  Treatment of Herpes simplex virus infections with topical antiviral agents. , 1998, European journal of dermatology : EJD.

[131]  G. V. Paolini,et al.  Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes , 1997, J. Comput. Aided Mol. Des..

[132]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[133]  J. Kelly,et al.  Progress towards understanding β-sheet structure , 1996 .

[134]  Frank H. Allen,et al.  The Nature and Geometry of Intermolecular Interactions between Halogens and Oxygen or Nitrogen , 1996 .

[135]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[136]  S. Patai,et al.  The Chemistry of halides, pseudo-halides, and azides , 1995 .

[137]  I. Kuntz,et al.  Automated docking with grid‐based energy evaluation , 1992 .

[138]  A. Pinchera,et al.  [Amiodarone and thyroid function]. , 1987, Cardiologia.

[139]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[140]  Peter Murray-Rust,et al.  Iodine⋯X(O, N, S) intermolecular contacts: models of thyroid hormoneprotein binding interactions using information from the cambridge crystallographic data files , 1984 .

[141]  M. B. Rosenbaum,et al.  Ten years of experience with amiodarone. , 1983, American heart journal.

[142]  G. Sudlow,et al.  The characterization of two specific drug binding sites on human serum albumin. , 1975, Molecular pharmacology.

[143]  O. Hassel,et al.  Structural aspects of interatomic charge-transfer bonding. , 1970, Science.

[144]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[145]  Timothy Clark,et al.  σ-Holes: σ-Holes , 2013 .

[146]  Weizhou Wang,et al.  Competition between π•••π interaction and halogen bond in solution: A combined 13C NMR and density functional theory study , 2012 .

[147]  A. Orozco,et al.  Halometabolites and cellular dehalogenase systems: an evolutionary perspective. , 2004, International review of cytology.

[148]  Paul M G Curmi,et al.  Twist and shear in beta-sheets and beta-ribbons. , 2002, Journal of molecular biology.

[149]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[150]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[151]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[152]  I. Kuntz,et al.  Ligand solvation in molecular docking , 1999, Proteins.

[153]  J. W. Kelly,et al.  Progress towards understanding beta-sheet structure. , 1996, Bioorganic & medicinal chemistry.

[154]  R. Glen,et al.  Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. , 1995, Journal of molecular biology.

[155]  Peter Murray-Rust,et al.  Angular preferences of intermolecular forces around halogen centers: preferred directions of approach of electrophiles and nucleophiles around carbon-halogen bond , 1986 .

[156]  R. Gaylord unpublished results , 1985 .

[157]  F. Salemme,et al.  Conformations of twisted parallel beta-sheets and the origin of chirality in protein structures. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[158]  N. A. Sörensen,et al.  The Structure of Bromine 1,4-Dioxanate. , 1954 .

[159]  F. C. Bernstein,et al.  \the Protein Data Bank: a Computer-based Archival Le for Macromolecular Structures," , 2022 .