Semidefinite relaxations for quadratically constrained quadratic programming: A review and comparisons

At the intersection of nonlinear and combinatorial optimization, quadratic programming has attracted significant interest over the past several decades. A variety of relaxations for quadratically constrained quadratic programming (QCQP) can be formulated as semidefinite programs (SDPs). The primary purpose of this paper is to present a systematic comparison of SDP relaxations for QCQP. Using theoretical analysis, it is shown that the recently developed doubly nonnegative relaxation is equivalent to the Shor relaxation, when the latter is enhanced with a partial first-order relaxation-linearization technique. These two relaxations are shown to theoretically dominate six other SDP relaxations. A computational comparison reveals that the two dominant relaxations require three orders of magnitude more computational time than the weaker relaxations, while providing relaxation gaps averaging 3% as opposed to gaps of up to 19% for weaker relaxations, on 700 randomly generated problems with up to 60 variables. An SDP relaxation derived from Lagrangian relaxation, after the addition of redundant nonlinear constraints to the primal, achieves gaps averaging 13% in a few CPU seconds.

[1]  Tim Van Voorhis,et al.  A Global Optimization Algorithm using Lagrangian Underestimates and the Interval Newton Method , 2002, J. Glob. Optim..

[2]  Masakazu Kojima,et al.  Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0) , 2003, Optim. Methods Softw..

[3]  Ivo Nowak A New Semidefinite Programming Bound for Indefinite Quadratic Forms Over a Simplex , 1999, J. Glob. Optim..

[4]  Tamás Terlaky,et al.  A Survey of the S-Lemma , 2007, SIAM Rev..

[5]  Samuel Burer,et al.  Computable representations for convex hulls of low-dimensional quadratic forms , 2010, Math. Program..

[6]  Kurt M. Anstreicher,et al.  Institute for Mathematical Physics Semidefinite Programming versus the Reformulation–linearization Technique for Nonconvex Quadratically Constrained Quadratic Programming Semidefinite Programming versus the Reformulation-linearization Technique for Nonconvex Quadratically Constrained , 2022 .

[7]  M. Er Quadratic optimization problems in robust beamforming , 1990 .

[8]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[9]  Jeff T. Linderoth A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs , 2005, Math. Program..

[10]  Samuel Burer,et al.  On the copositive representation of binary and continuous nonconvex quadratic programs , 2009, Math. Program..

[11]  FAIZ A. AL-KHAYYAL,et al.  A relaxation method for nonconvex quadratically constrained quadratic programs , 1995, J. Glob. Optim..

[12]  Henry Wolkowicz,et al.  Semidefinite programming for discrete optimization and matrix completion problems , 2002, Discret. Appl. Math..

[13]  Marco Locatelli,et al.  Packing equal circles in a square: a deterministic global optimization approach , 2002, Discret. Appl. Math..

[14]  Franz Rendl,et al.  A recipe for semidefinite relaxation for (0,1)-quadratic programming , 1995, J. Glob. Optim..

[15]  Hanif D. Sherali,et al.  CONVEX ENVELOPES OF MULTILINEAR FUNCTIONS OVER A UNIT HYPERCUBE AND OVER SPECIAL DISCRETE SETS , 1997 .

[16]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[17]  Henry Wolkowicz,et al.  A note on lack of strong duality for quadratic problems with orthogonal constraints , 2002, Eur. J. Oper. Res..

[18]  Samuel Burer,et al.  Optimizing a polyhedral-semidefinite relaxation of completely positive programs , 2010, Math. Program. Comput..

[19]  N. Sahinidis,et al.  A Lagrangian Approach to the Pooling Problem , 1999 .

[20]  Nikolaos V. Sahinidis,et al.  Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs , 2009, Optim. Methods Softw..

[21]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[22]  Etienne de Klerk,et al.  On Copositive Programming and Standard Quadratic Optimization Problems , 2000, J. Glob. Optim..

[23]  Henry Wolkowicz,et al.  Semidefinite and Lagrangian Relaxations for Hard Combinatorial Problems , 1999, System Modelling and Optimization.

[24]  Nikolaos V. Sahinidis,et al.  Process planning in a fuzzy environment , 1997, Eur. J. Oper. Res..

[25]  Samuel Burer,et al.  Relaxing the optimality conditions of box QP , 2011, Comput. Optim. Appl..

[26]  Samuel Burer,et al.  A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations , 2008, Math. Program..

[27]  Anatoliy D. Rikun,et al.  A Convex Envelope Formula for Multilinear Functions , 1997, J. Glob. Optim..

[28]  B. Borchers A C library for semidefinite programming , 1999 .

[29]  E. Phan-huy-Hao,et al.  Quadratically constrained quadratic programming: Some applications and a method for solution , 1982, Z. Oper. Research.

[30]  Yinyu Ye,et al.  DSDP5: Software for Semidefinite Programming , 2005 .

[31]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[32]  Samuel Burer,et al.  D.C. Versus Copositive Bounds for Standard QP , 2005, J. Glob. Optim..

[33]  James E. Falk,et al.  Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..

[34]  Hans D. Mittelmann,et al.  An independent benchmarking of SDP and SOCP solvers , 2003, Math. Program..

[35]  Wei Xie,et al.  A branch-and-bound algorithm for the continuous facility layout problem , 2008, Comput. Chem. Eng..

[36]  A. J. Quist,et al.  Copositive realxation for genera quadratic programming , 1998 .

[37]  Naum Z. Shor,et al.  Dual estimates in multiextremal problems , 1992, J. Glob. Optim..

[38]  A. J. Quist,et al.  Copositive relaxation for general quadratic programming. , 1998 .

[39]  Immanuel M. Bomze,et al.  Improved SDP bounds for minimizing quadratic functions over the $$\ell^{1}$$-ball , 2006, Optim. Lett..

[40]  F. Al-Khayyal Generalized bilinear programming: Part I. Models, applications and linear programming relaxation , 1992 .

[41]  Masakazu Kojima,et al.  Semidefinite Programming Relaxation for Nonconvex Quadratic Programs , 1997, J. Glob. Optim..

[42]  Etienne de Klerk,et al.  Solving Standard Quadratic Optimization Problems via Linear, Semidefinite and Copositive Programming , 2002, J. Glob. Optim..

[43]  N. Shor Dual quadratic estimates in polynomial and Boolean programming , 1991 .

[44]  Stephen A. Vavasis,et al.  Quadratic Programming is in NP , 1990, Inf. Process. Lett..

[45]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[46]  Yang Dai,et al.  Global Optimization Approach to Unequal Global Optimization Approach to Unequal Sphere Packing Problems in 3D , 2002 .

[47]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[48]  Hanif D. Sherali,et al.  RLT: A unified approach for discrete and continuous nonconvex optimization , 2007, Ann. Oper. Res..

[49]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[50]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[51]  Michael C. Dorneich,et al.  GLOBAL OPTIMIZATION ALGORITHMS FOR CHIP LAYOUT AND COMPACTION , 1995 .

[52]  Fabio Tardella,et al.  New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability , 2008, Math. Program..