NONPARAMETRIC ESTIMATION OF A GENERALIZED ADDITIVE MODEL WITH AN UNKNOWN LINK FUNCTION

This paper is concerned with estimating the mean of a random variable Y conditional on a vector of covariates X under weak assumptions about the form of the conditional mean function. Fully nonparametric estimation is usually unattractive when X is multidimensional because estimation precision decreases rapidly as the dimension of X increases. This problem can be overcome by using dimension reduction methods such as single-index, additive, multiplicative, and partially linear models. These models are non-nested, however, so an analyst must choose among them. If an incorrect choice is made, the resulting model is misspecified and inferences based on it may be misleading. This paper describes an estimator for a new model that nests single-index, additive, and multiplicative models. The new model achieves dimension reduction without the need for choosing between single-index, additive, and multiplicative specifications. The centered, normalized estimators of the new model's unknown functions are asymptotically normally distributed. An extension of the new model nests partially linear models

[1]  P. Robinson ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .

[2]  O. Linton,et al.  A kernel method of estimating structured nonparametric regression based on marginal integration , 1995 .

[3]  A. Lewbel,et al.  Nonparametric Censored Regression , 1998 .

[4]  Hans-Georg Müller,et al.  Smooth Optimum Kernel Estimators of Densities, Regression Curves and Modes , 1984 .

[5]  H. Ichimura,et al.  SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .

[6]  Wolfgang Härdle,et al.  APPLIED NONPARAMETRIC METHODS , 1992 .

[7]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[8]  J. Pinkse Feasible Multivariate Nonparametric Estimation Using Weak Separability , 2000 .

[9]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[10]  Wolfgang K. Härdle,et al.  A note on jackknifing kernel regression function estimators , 1986, IEEE Trans. Inf. Theory.

[11]  R. Sherman The Limiting Distribution of the Maximum Rank Correlation Estimator , 1993 .

[12]  Wolfgang Härdle,et al.  Applied Nonparametric Regression , 1991 .

[13]  O. Linton,et al.  Nonparametric Censored and Truncated Regression , 2000 .

[14]  Aaron K. Han Non-parametric analysis of a generalized regression model: the maximum rank correlation estimator , 1987 .

[15]  D. Pollard Convergence of stochastic processes , 1984 .

[16]  W. Härdle,et al.  Direct Semiparametric Estimation of Single-Index Models with Discrete Covariates dpsfb950075.ps.tar = Enno MAMMEN J.S. MARRON: Mass Recentered Kernel Smoothers , 1996 .

[17]  W. Härdle,et al.  Estimation of additive regression models with known links , 1996 .

[18]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[19]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[20]  Wolfgang Härdle,et al.  On adaptive estimation in partial linear models , 2000 .

[21]  L. Schmetterer Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .

[22]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[23]  H. Bierens Advances in Econometrics: Kernel estimators of regression functions , 1987 .

[24]  R. Tibshirani,et al.  Linear Smoothers and Additive Models , 1989 .

[25]  T. Severini,et al.  Quasi-Likelihood Estimation in Semiparametric Models , 1994 .

[26]  Whitney K. Newey,et al.  Efficiency of weighted average derivative estimators and index models , 1993 .

[27]  Joseph P. Romano,et al.  Large Sample Confidence Regions Based on Subsamples under Minimal Assumptions , 1994 .

[28]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[29]  Thomas M. Stoker EQUIVALENCE OF DIRECT , INDIRECT AND SLOPE ESTIMATORS OR AVERAGE DERIVATIVES , 2022 .

[30]  B. Silverman,et al.  Weak and strong uniform consistency of kernel regression estimates , 1982 .

[31]  J. Pinkse Feasible Multivariate Nonparametric Regression Estimation Using Weak Separability , 1999 .

[32]  A. Lewbel,et al.  Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables , 2000 .

[33]  R. Spady,et al.  AN EFFICIENT SEMIPARAMETRIC ESTIMATOR FOR BINARY RESPONSE MODELS , 1993 .

[34]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .