Contribution à l'approximation numérique des systèmes hyperboliques

Dans ce travail, on s'interesse a plusieurs aspects de l'approximation numerique des systemes hyperboliques de lois de conservation. La premiere partie est dediee a la construction de schemas d'ordre eleve sur des maillages 2D non structures. On developpe une nouvelle technique de reconstruction de gradients basee sur l'ecriture de deux schemas MUSCL sur deux maillages imbriques. Cette procedure augmente le nombre d'inconnues numeriques, mais permet d'approcher la solution avec une grande precision. Dans la deuxieme partie, on etudie la stabilite des schemas d'ordre eleve. On montre dans un premier temps que les inegalites d'entropie discretes usuelles verifiees par les schemas d'ordre eleve ne sont pas pertinentes pour assurer le bon comportement dans le regime de convergence. On propose alors une extension des techniques de limitation {\it a posteriori} pour forcer la verification des inegalites d'entropie discretes requises. Dans la derniere partie, on s'interesse a la construction de schemas well-balanced pour le modele de Saint-Venant, le modele de Ripa et les equations d'Euler avec gravite. On propose plusieurs strategies permettant d'obtenir des schemas numeriques capables de preserver tous les regimes stationnaires au repos. On developpe egalement des extensions d'ordre eleve.

[1]  Y. Coudière,et al.  A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation , 2009 .

[2]  S. Mishra,et al.  Well-balanced schemes for the Euler equations with gravitation , 2014, J. Comput. Phys..

[3]  Christophe Chalons,et al.  Relaxation approximation of the Euler equations , 2008 .

[4]  Christophe Berthon,et al.  Efficient well-balanced hydrostatic upwind schemes for shallow-water equations , 2012, J. Comput. Phys..

[5]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[6]  Christophe Berthon,et al.  Robustness of MUSCL schemes for 2D unstructured meshes , 2006, J. Comput. Phys..

[7]  Wanai Li,et al.  The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids , 2011, J. Comput. Phys..

[8]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[9]  P. Raviart,et al.  An asymptotic expansion for the solution of the generalized Riemann problem. Part 2 : application to the equations of gas dynamics , 1989 .

[10]  Emmanuel Creusé,et al.  L∞-stability of vertex-based MUSCL finite volume schemes on unstructured grids: Simulation of incompressible flows with high density ratios , 2010, J. Comput. Phys..

[11]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[12]  V. Guinot Approximate Riemann Solvers , 2010 .

[13]  François Bouchut,et al.  A MUSCL method satisfying all the numerical entropy inequalities , 1996, Math. Comput..

[14]  Ami Harten,et al.  Convex Entropies and Hyperbolicity for General Euler Equations , 1998 .

[15]  Philippe G. LeFloch,et al.  A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime , 2011, J. Comput. Phys..

[16]  Yu Liu,et al.  Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients , 2014, Numerische Mathematik.

[17]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[18]  Smadar Karni,et al.  A second order kinetic scheme for gas dynamics on arbitrary grids , 2005 .

[19]  F. Boyer,et al.  Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .

[20]  Paul-Henry Cournède,et al.  Positivity statements for a mixed-element-volume scheme on fixed and moving grids , 2006 .

[21]  P. Raviart,et al.  Approximate solution of the generalized Riemann problem and applications , 1987 .

[22]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[23]  Fabien Marche,et al.  An efficient scheme on wet/dry transitions for shallow water equations with friction , 2011 .

[24]  Rémi Abgrall,et al.  A Review of Residual Distribution Schemes for Hyperbolic and Parabolic Problems: The July 2010 State of the Art , 2012 .

[25]  L. Gosse A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms☆ , 2000 .

[26]  Eitan Tadmor,et al.  A minimum entropy principle in the gas dynamics equations , 1986 .

[27]  Yifan Zhang,et al.  Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes , 2013, J. Comput. Phys..

[28]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[29]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[30]  Emmanuel Creusé,et al.  Positivity-preserving schemes for Euler equations: Sharp and practical CFL conditions , 2013, J. Comput. Phys..

[31]  J. Greenberg,et al.  Analysis and Approximation of Conservation Laws with Source Terms , 1997 .

[32]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[33]  F. Hermeline Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes , 2007 .

[34]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[35]  Long Chen FINITE VOLUME METHODS , 2011 .

[36]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[37]  Christophe Berthon,et al.  Numerical approximations of the 10-moment Gaussian closure , 2006, Math. Comput..

[38]  With Invariant Submanifolds,et al.  Systems of Conservation Laws , 2009 .

[39]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[40]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[41]  Yves Coudière,et al.  A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations , 2009, SIAM J. Sci. Comput..

[42]  Andrew J. Majda,et al.  Nonlinear development of instabilities in supersonic vortex sheets I. The basic kink modes , 1987 .

[43]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[44]  M. Darwish,et al.  TVD schemes for unstructured grids , 2003 .

[45]  Philippe G. LeFloch,et al.  An entropy satisfying MUSCL scheme for systems of conservation laws , 1996 .

[46]  Matthew E. Hubbard,et al.  Regular Article: Multidimensional Slope Limiters for MUSCL-Type Finite Volume Schemes on Unstructured Grids , 1999 .

[47]  Jean-Marc Hérard,et al.  A sequel to a rough Godunov scheme: application to real gases , 2000 .

[48]  I. Suliciu,et al.  On the thermodynamics of rate-type fluids and phase transitions. I. Rate-type fluids , 1998 .

[49]  Bruno Dubroca,et al.  Solveur de Roe positivement conservatif , 1999 .

[50]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[51]  Derek M. Causon,et al.  On the Choice of Wavespeeds for the HLLC Riemann Solver , 1997, SIAM J. Sci. Comput..

[52]  M. Berger,et al.  Analysis of Slope Limiters on Irregular Grids , 2005 .

[53]  Xu-Dong Liu,et al.  A maximum principle satisfying modification of triangle based adaptive stencils for the solution of scalar hyperbolic conservation laws , 1993 .

[54]  P. Ripa Conservation laws for primitive equations models with inhomogeneous layers , 1993 .

[55]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[56]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[57]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[58]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[59]  B. Perthame Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions , 1992 .

[60]  Q. Liang,et al.  Numerical resolution of well-balanced shallow water equations with complex source terms , 2009 .

[61]  Frédéric Coquel,et al.  Second‐order entropy diminishing scheme for the Euler equations , 2006 .

[62]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[63]  Stéphane Clain,et al.  A high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD) , 2011, J. Comput. Phys..

[64]  Roberto Natalini,et al.  GLOBAL EXISTENCE OF SMOOTH SOLUTIONS FOR PARTIALLYDISSIPATIVE HYPERBOLIC SYSTEMS WITH A CONVEX ENTROPYB , 2002 .

[65]  C. Ollivier-Gooch,et al.  Limiters for Unstructured Higher-Order Accurate Solutions of the Euler Equations , 2008 .

[66]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[67]  Laurent Gosse,et al.  Computing Qualitatively Correct Approximations of Balance Laws , 2013 .

[68]  Olivier Delestre,et al.  SWASHES: a compilation of shallow water analytic solutions for hydraulic and environmental studies , 2011, 1110.0288.

[69]  Alfredo Bermúdez,et al.  Upwind methods for hyperbolic conservation laws with source terms , 1994 .

[70]  Stéphane Clain,et al.  Monoslope and multislope MUSCL methods for unstructured meshes , 2010, J. Comput. Phys..

[71]  Benoît Perthame,et al.  A variant of Van Leer's method for multidimensional systems of conservation laws , 1994 .

[72]  Eiji Shima,et al.  Simple and Parameter-Free Second Slope Limiter for Unstructured Grid Aerodynamic Simulations , 2012 .

[73]  C. Berthon,et al.  Stability of the MUSCL Schemes for the Euler Equations , 2005 .

[74]  Philippe G. LeFloch,et al.  Late-time/stiff-relaxation asymptotic-preserving approximations of hyperbolic equations , 2010, Math. Comput..

[75]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[76]  P. Raviart,et al.  GODUNOV-TYPE SCHEMES FOR HYPERBOLIC SYSTEMS WITH PARAMETER-DEPENDENT SOURCE: THE CASE OF EULER SYSTEM WITH FRICTION , 2010 .

[77]  B. Perthame,et al.  Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics , 1998 .

[78]  Pascal Omnes,et al.  A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .

[79]  T. Hou,et al.  Why nonconservative schemes converge to wrong solutions: error analysis , 1994 .

[80]  Benoît Perthame,et al.  Maximum principle on the entropy and second-order kinetic schemes , 1994 .

[81]  Georges Kesserwani,et al.  An improvement of classical slope limiters for high‐order discontinuous Galerkin method , 2009 .

[82]  Satoru Yamamoto,et al.  Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations , 1993 .

[83]  Michael Westdickenberg,et al.  Convergence of Approximate Solutions of Conservation Laws , 2015, 1502.00798.

[84]  P. R. Woodward Simulation of the Kelvin-Helmholtz instability of a supersonic slip surface with the Piecewise-Parabolic Method (PPM) , 1984 .

[85]  Fabien Marche,et al.  A Positive Preserving High Order VFRoe Scheme for Shallow Water Equations: A Class of Relaxation Schemes , 2008, SIAM J. Sci. Comput..

[86]  F. Hermeline,et al.  A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes , 2000 .

[87]  Éléments de distributions et d'équations aux dérivées partielles : cours et problèmes rèsolus , 2005 .

[88]  Xiangxiong Zhang,et al.  Positivity-preserving high order finite difference WENO schemes for compressible Euler equations , 2012, J. Comput. Phys..

[89]  K. Karlsen,et al.  Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations , 2009, 0901.0816.

[90]  Chi-Wang Shu,et al.  On positivity preserving finite volume schemes for Euler equations , 1996 .

[91]  J. Falcovitz,et al.  A second-order Godunov-type scheme for compressible fluid dynamics , 1984 .

[92]  Christophe Berthon,et al.  Space-time Generalized Riemann Problem Solvers of Order k for Linear Advection with Unrestricted Time Step , 2013, J. Sci. Comput..

[93]  P. Raviart,et al.  An asymptotic expansion for the solution of the generalized Riemann problem Part I: General theory , 1988 .

[94]  Yong-Tao Zhang,et al.  Resolution of high order WENO schemes for complicated flow structures , 2003 .

[95]  Stéphane Clain,et al.  Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials , 2012 .

[96]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[97]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[98]  I. Suliciu,et al.  On the thermodynamics of rate-type fluids and phase transitions. II. Phase transitions , 1998 .

[99]  P. Lax Shock Waves and Entropy , 1971 .

[100]  G. Gallice,et al.  Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source , 2002 .

[101]  P. Ripa On improving a one-layer ocean model with thermodynamics , 1995, Journal of Fluid Mechanics.

[102]  Gérard Gallice,et al.  Positive and Entropy Stable Godunov-type Schemes for Gas Dynamics and MHD Equations in Lagrangian or Eulerian Coordinates , 2003, Numerische Mathematik.

[103]  Jostein R. Natvig,et al.  Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows , 2006, J. Comput. Phys..

[104]  Eitan Tadmor,et al.  Solution of two‐dimensional Riemann problems for gas dynamics without Riemann problem solvers , 2002 .

[105]  Christophe Berthon Inégalités d'entropie pour un schéma de relaxation , 2005 .