Analyzing industrial energy use through ordinary least squares regression models

[1]  J. S. Haberl,et al.  Impact of using measured weather data vs. TMY weather data in a DOE-2 simulation , 1995 .

[2]  David E. Claridge,et al.  A development and comparison of NAC estimates for linear and change-point energy models for commercial buildings , 1993 .

[3]  David E. Claridge,et al.  Measuring energy-saving retrofits: Experiences from the Texas LoanSTAR program , 1996 .

[4]  David J. C. MacKay,et al.  BAYESIAN NON-LINEAR MODELING FOR THE PREDICTION COMPETITION , 1996 .

[5]  David E. Claridge A Perspective on Methods for Analysis of Measured Energy Data from Commercial Buildings , 1998 .

[6]  J. Kelly Kissock,et al.  Measuring industrial energy savings , 2008 .

[7]  Steven C. Chapra,et al.  Applied Numerical Methods with MATLAB for Engineers and Scientists , 2004 .

[8]  Tao Hong,et al.  Modeling and forecasting hourly electric load by multiple linear regression with interactions , 2010, IEEE PES General Meeting.

[9]  David E. Claridge,et al.  A Four-Parameter Change-Point Model for Predicting Energy Consumption in Commercial Buildings , 1992 .

[10]  Carl Eger Integrating methods of statistical analysis to identify energy‐saving opportunities , 2006 .

[11]  Margaret F. Fels PRISM: An Introduction , 1986 .

[12]  Jeffrey S. Simonoff,et al.  Handbook of Regression Analysis , 2012 .

[13]  B. P. Feuston,et al.  Generalized nonlinear regression with ensemble of neural nets: The great energy predictor shootout , 1994 .

[14]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[15]  Helge Toutenburg,et al.  Linear models : least squares and alternatives , 1999 .

[16]  Carsten Peterson,et al.  Predicting System loads with Artificial Neural Networks : Method and Result from "the Great Energy Predictor Shootout" , 1994 .

[17]  David E. Claridge,et al.  A Change-Point Principal Component Analysis (CP/PCA) Method for Predicting Energy Usage in Commercial Buildings: The PCA Model , 1993 .

[18]  John Seryak,et al.  UNDERSTANDING MANUFACTURING ENERGY USE THROUGH STATISTICAL ANALYSIS , 2004 .

[19]  J. K. Kissock A Methodology to Measure Retrofit Energy Savings in Commercial Buildings , 2008 .

[20]  Dan Brown,et al.  Estimating Industrial Building Energy Savings using Inverse Simulation , 2011 .

[21]  T. Agami Reddy,et al.  Applied Data Analysis and Modeling for Energy Engineers and Scientists , 2011 .

[22]  David E. Claridge,et al.  Bias in Predicting Annual Energy Use in Commercial Buildings with Regression Models Developed from Short Data Sets , 1994 .

[23]  David E. Claridge,et al.  Inverse Modeling Toolkit: Numerical Algorithms for Best-Fit Variable-Base Degree Day and Change Point Models , 2003 .

[24]  David E. Claridge,et al.  Multivariate Regression Modeling , 1998 .

[25]  A. Rabl,et al.  Energy signature models for commercial buildings: test with measured data and interpretation , 1992 .

[26]  Sedat Akkurt,et al.  Artificial neural networks applications in building energy predictions and a case study for tropical climates , 2005 .

[27]  David E. Claridge,et al.  An Overview of Measured Energy Retrofit Savings Methodologies Developed in the Texas LoanSTAR Program , 1994 .

[28]  J. F. Kreider,et al.  Neural networks applied to buildings -- A tutorial and case studies in prediction and adaptive control , 1996 .

[29]  Dale Borowiak,et al.  Linear Models, Least Squares and Alternatives , 2001, Technometrics.

[30]  H. Akbari,et al.  Application of an End-Use Disaggregation Algorithm for Obtaining Building Energy-Use Data , 1998 .

[31]  T. A. Reddy,et al.  Uncertainty in baseline regression modeling and in determination of retrofit savings , 1998 .

[32]  David E. Claridge,et al.  Ambient-temperature regression analysis for estimating retrofit savings in commercial buildings , 1998 .

[33]  Leon S. Lasdon,et al.  Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming , 1978, TOMS.

[34]  V. Geros,et al.  Modeling and predicting building's energy use with artificial neural networks: Methods and results , 2006 .

[35]  David E. Claridge,et al.  Baselining methodology for facility-level monthly energy use. Part 1: Theoretical aspects , 1997 .

[36]  Wayne Turner,et al.  Energy Management Handbook , 2020 .

[37]  Lawrence C. Marsh Spline Regression Models , 2001 .

[38]  Robert C. Sonderegger,et al.  A Baseline Model for Utility Bill Analysis Using Both Weather and Non-Weather Related Variables 1 , 1998 .

[39]  David E. Claridge,et al.  Inverse Modeling Toolkit: Numerical Algorithms , 2004 .

[40]  David E. Claridge,et al.  Development of a Toolkit for Calculating Linear, Change–Point Linear and Multiple–Linear Inverse Building Energy Analysis Models, ASHRAE Research Project 1050-RP, Detailed Test Results , 2001 .

[41]  Leon S. Lasdon,et al.  Design and Use of the Microsoft Excel Solver , 1998, Interfaces.

[42]  Kelly Kissock,et al.  Understanding Industrial Energy Use through Sliding Regression Analysis , 2007 .

[43]  David E. Claridge,et al.  Baselining methodology for facility-level monthly energy use - Part 2: application to eight army installations , 1997 .

[44]  David E. Claridge,et al.  Use of Simplified System Models to Measure Retrofit Energy Savings , 1993 .

[45]  Carlos Gershenson,et al.  Artificial Neural Networks for Beginners , 2003, ArXiv.

[46]  John Kissock,et al.  Modeling commercial building energy use with artificial neural networks , 1994 .

[47]  Moncef Krarti,et al.  Estimation of energy savings for building retrofits using neural networks , 1998 .

[48]  David E. Claridge,et al.  Baseline calculations for measurement and verification of energy and demand savings in a revolving loan program in Texas , 1998 .

[49]  Jay L. Devore,et al.  Probability and statistics for engineering and the sciences , 1982 .

[50]  David E. Claridge,et al.  Predicting Energy Usage in a Supermarket , 1989 .