Preparation and Optical Properties of Transparent (Ce,Gd)3Al3Ga2O12 Ceramics

Transparent (Ce,Gd)3Al3Ga2O12 (Ce:GAGG) ceramics are promising scintillators for use in high-energy particle detection application such as nuclear medical imaging. In this study, we report a novel method for the preparation of transparent Ce:GAGG ceramic in oxygen atmosphere without sintering aid. The highest transmittance of as prepared samples with thickness of 1 mm around wavelength of 558 nm reaches 62%, which is close to that value of its comparative single crystal. The average grain size of samples sintered at 1650°C for 10 h is about 11 μm. The spectroscopic properties have also been investigated. The emission peak around 558 nm, which is consistent with that of Ce:GAGG single crystals, matches well with the detection wavelength of photomultiplier.

[1]  Shunsuke Kurosawa,et al.  Defect Engineering in Ce-Doped Aluminum Garnet Single Crystal Scintillators , 2014 .

[2]  K. Yubuta,et al.  Crystal growth and characterization of Ce:Gd3(Ga,Al)5O12 single crystal using floating zone method in different O2 partial pressure , 2013 .

[3]  M. Satoh,et al.  Hot‐Pressing Method to Consolidate Gd3(Al,Ga)5O12:Ce Garnet Scintillator Powder for use in an X‐ray CT Detector , 2013 .

[4]  Jianjun Xie,et al.  Fabrication, Microstructure, and Luminescent Properties of Ce3+ ‐Doped Lu3Al5O12 (Ce:LuAG) Transparent Ceramics by Low‐Temperature Vacuum Sintering , 2013 .

[5]  Thomas Jüstel,et al.  Luminescence and luminescence quenching in Gd3(Ga,Al)5O12 scintillators doped with Ce3+. , 2013, The journal of physical chemistry. A.

[6]  Urmila Shirwadkar,et al.  Transparent garnet ceramic scintillators for gamma-ray detection , 2012, Optics & Photonics - Optical Engineering + Applications.

[7]  N. Wagner,et al.  Towards the preparation of transparent LuAG:Nd3+ ceramics , 2012 .

[8]  A. Meijerink,et al.  Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+. , 2012, The journal of physical chemistry. A.

[9]  Martin Nikl,et al.  2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12 , 2012 .

[10]  D. Ding,et al.  Study on the cerium oxidation state in a Lu0.8Sc0.2BO3host , 2011 .

[11]  K. Kamada,et al.  Composition Engineering in Cerium-Doped (Lu,Gd)3(Ga,Al)5O12 Single-Crystal Scintillators , 2011 .

[12]  D. Ding,et al.  Crystal growth and luminescence properties of Lu0.8Sc0.2BO3 scintillators doped with different Ce concentrations , 2011 .

[13]  L. Seijo,et al.  Structural, electronic, and spectroscopic effects of Ga codoping on Ce-doped yttrium aluminum garnet: First-principles study , 2010 .

[14]  Jingxian Zhang,et al.  Sintering of Transparent Yttria Ceramics in Oxygen Atmosphere , 2010 .

[15]  E. Auffray,et al.  LuAG:Ce fibers for high energy calorimetry , 2010 .

[16]  M. Moszynski,et al.  Scintillation Properties of LuAG:Ce, YAG:Ce and LYSO:Ce Crystals for Gamma-Ray Detection , 2009, IEEE Transactions on Nuclear Science.

[17]  A. Meijerink,et al.  Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce , 2009 .

[18]  Georges Boulon,et al.  Why so deep research on Yb3+-doped optical inorganic materials? , 2008 .

[19]  A. Vedda,et al.  Shallow traps and radiative recombination processes in Lu3Al5O12:Ce single crystal scintillator , 2007 .

[20]  Jeffery J. Roberts,et al.  Multiple synthesis routes to transparent ceramic lutetium aluminum garnet , 2007 .

[21]  R. Xie,et al.  Fabrication of Transparent Cerium‐Doped Lutetium Aluminum Garnet Ceramics by Co‐Precipitation Routes , 2006 .

[22]  Liping Huang,et al.  Cerium-doped lutetium aluminum garnet optically transparent ceramics fabricated by a sol-gel combustion process , 2006 .

[23]  K. Blažek,et al.  Luminescence of excitons and antisite defects in Lu3Al5O12:Ce single crystals and single-crystal films , 2005 .

[24]  A. Vedda,et al.  The antisite LuAl defect‐related trap in Lu3Al5O12:Ce single crystal , 2005 .

[25]  Xuejian Liu,et al.  Fabrication of Transparent Cerium‐Doped Lutetium Aluminum Garnet (LuAG:Ce) Ceramics by a Solid‐State Reaction Method , 2005 .

[26]  V. Mikhailin,et al.  Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues , 2005 .

[27]  Karel Nejezchleb,et al.  Scintillation response of Ce-doped or intrinsic scintillating crystals in the range up to 1MeV , 2004 .

[28]  C. Eijk,et al.  Inorganic scintillators in medical imaging detectors , 2003 .

[29]  I. Konstankevych,et al.  New scintillation detectors based on oxide single crystal films for biological microtomography , 2003 .

[30]  M. Martini,et al.  Traps and Timing Characteristics of LuAG:Ce3+ Scintillator , 2000 .

[31]  C Brecher,et al.  LuAlO/sub 3/:Ce and other aluminate scintillators , 1994, Proceedings of 1994 IEEE Nuclear Science Symposium - NSS'94.

[32]  H. Suzuki,et al.  Photostimulated luminescence and thermoluminescence of LSO scintillators , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[33]  R. Powell,et al.  Luminescence and Energy Transfer , 1980 .

[34]  Mel I. Mendelson,et al.  Average Grain Size in Polycrystalline Ceramics , 1969 .

[35]  A. Meijerink,et al.  Luminescence and Energy Transfer in Lu3Al5O12 Scintillators Co- Doped with Ce and Tb , 2012 .