On the power of lookahead in on-line server routing problems

We study the usefulness of lookahead in on-line server routing problems: if an on-line algorithm is not only informed about the requests released so far, but also has a limited ability to foresee future requests, what is the improvement that can be achieved in terms of the competitive ratio? We consider several on-line server routing problems in this setting, such as the on-line traveling salesman and the on-line traveling repairman problem. We show that the influence of lookahead can change considerably depending on the particular objective function and metric space considered.

[1]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[2]  Naveen Garg,et al.  A 3-approximation for the minimum tree spanning k vertices , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[3]  Susanne Albers,et al.  On the Influence of Lookahead in Competitive Paging Algorithms , 1997, Algorithmica.

[4]  Leen Stougie,et al.  Online k-Server Routing Problems , 2008, Theory of Computing Systems.

[5]  Giorgio Ausiello,et al.  The On-line Asymmetric Traveling Salesman Problem , 2005, WADS.

[6]  Leen Stougie,et al.  The Online-TSP against Fair Adversaries , 2000, CIAC.

[7]  Leen Stougie,et al.  News from the online traveling repairman , 2003, Theor. Comput. Sci..

[8]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[9]  Leen Stougie,et al.  On-line single-server dial-a-ride problems , 2001, Theor. Comput. Sci..

[10]  Gregory Gutin,et al.  The traveling salesman problem , 2006, Discret. Optim..

[11]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[12]  Gerhard Reinelt,et al.  Traveling salesman problem , 2012 .

[13]  Vincenzo Bonifaci An adversarial queueing model for online server routing , 2007, Theor. Comput. Sci..

[14]  Christos H. Papadimitriou,et al.  Beyond competitive analysis [on-line algorithms] , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[15]  de We Willem Paepe,et al.  Complexity results and competitive analysis for vehicle routing problems , 2002 .

[16]  Gerhard J. Woeginger,et al.  Developments from a June 1996 seminar on Online algorithms: the state of the art , 1998 .

[17]  Leen Stougie,et al.  Algorithms for the On-Line Travelling Salesman1 , 2001, Algorithmica.

[18]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[19]  Vangelis Th. Paschos,et al.  Algorithms for the On-Line Quota Traveling Salesman Problem , 2004, Inf. Process. Lett..

[20]  René Sitters,et al.  The Minimum Latency Problem Is NP-Hard for Weighted Trees , 2002, IPCO.

[21]  Sven Oliver Krumke,et al.  Online Dial-a-Ride Problems: Minimizing the Completion Time , 2000, STACS.

[22]  V. Bonifaci,et al.  Models and algorithms for online server routing , 2007 .

[23]  Sven O. Krumke,et al.  Online Optimization: Competitive Analysis and Beyond , 2002 .

[24]  Allan Borodin,et al.  Adversarial queuing theory , 2001, JACM.

[25]  Leen Stougie,et al.  Non-abusiveness Helps: An % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC% vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbuLwBLnhiov2DGi1BTfMBaeHb% d9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb% L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe% pae9pg0FirpepeKkFr0xfr-xfr , 2002 .

[26]  Susanne Albers,et al.  A Competitive Analysis of the List Update Problem with Lookahead , 1994, Theor. Comput. Sci..

[27]  Jon M. Kleinberg,et al.  An improved approximation ratio for the minimum latency problem , 1996, SODA '96.

[28]  Giorgio Ausiello,et al.  On-Line Algorithms, Real Time, the Virtue of Laziness, and the Power of Clairvoyance , 2006, TAMC.

[29]  Giorgio Ausiello,et al.  On the Power of Lookahead in On-Line Vehicle Routing Problems , 2005, COCOON.

[30]  Patrick Jaillet,et al.  Online Routing Problems: Value of Advanced Information as Improved Competitive Ratios , 2006, Transp. Sci..

[31]  M Maarten Lipmann,et al.  On-line routing , 2003 .

[32]  Sven Oliver Krumke,et al.  The Online Dial-a-Ride Problem under Reasonable Load , 2000, CIAC.

[33]  George Papageorgiou,et al.  The Complexity of the Travelling Repairman Problem , 1986, RAIRO Theor. Informatics Appl..

[34]  Leen Stougie,et al.  Non-abusiveness Helps: An O(1)-Competitive Algorithm for Minimizing the Maximum Flow Time in the Online Traveling Salesman Problem , 2002, APPROX.