Evolutionary characterisation of lung adenocarcinoma morphology in TRACERx

David R. Jones | Angela E. Leek | Z. Szallasi | A. Nicholson | W. Travis | P. Van Loo | A. Stewart | J. Nicod | G. Wilson | F. Fraioli | S. Jordan | K. Kerr | N. Rekhtman | K. Blyth | Yinyin Yuan | K. AbdulJabbar | D. Moore | C. Hiley | R. Rosenthal | M. Jamal-Hanjani | S. Veeriah | A. Hackshaw | T. Marafioti | S. Quezada | F. Sánchez-Vega | Mihaela Angelova | N. Birkbak | D. Fennell | B. Campbell | K. Peggs | G. Royle | N. Kanu | M. Dietzen | A. Alzetani | J. Herrero | J. Cave | D. Levi | C. Dive | E. Lim | F. Blackhall | V. Spanswick | J. Hartley | C. Lindsay | M. Falzon | S. López | O. Pich | A. Frankell | K. Enfield | S. Saghafinia | E. Kilgour | K. Dijkstra | T. Watkins | J. Rane | J. Demeulemeester | C. Abbosh | Joan Riley | E. Grönroos | S. Lee | T. Ahmad | E. Borg | N. Panagiotopoulos | R. Thakrar | Asia Ahmed | Y. Summers | R. Shah | P. Crosbie | G. Langman | A. Nakas | S. Rathinam | P. Russell | H. Lowe | J. Shaw | K. Litchfield | E. Nye | S. Boeing | K. Tan | Mar Durán | A. Nair | M. Tanić | M. Krebs | D. Rothwell | C. Veiga | N. Navani | J. Tugwood | L. Priest | R. Hynds | J. Goldman | R. Stone | Tamara Denner | Y. Wong | D. Papadatos-Pastos | J. Choudhary | K. Rammohan | E. Fontaine | Stuart Moss | P. Bishop | H. Doran | J. Novasio | E. Smith | S. Kadiri | M. Djearaman | L. Primrose | M. Mackenzie | Sean Smith | N. Gower | S. Chee | P. De Sousa | A. Rice | H. Raubenheimer | H. Bhayani | L. Ambrose | S. Buderi | Hema Chavan | S. Danson | M. Shackcloth | E. L. Cadieux | J. Reading | T. Karasaki | Kezhong Chen | S. Bandula | G. Kassiotis | P. Adusumilli | Claudia Lee | N. Kostoulas | S. Benafif | A. Clipson | Hanyun Zhang | Elena Hoxha | M. Scarci | Mansi Shah | S. Begum | B. Naidu | Alastair Kerr | William Hill | P. Oliveira | O. Al-Sawaf | A. Kirk | Alastair J. Magness | M. Hewish | Maise Al Bakir | Katey S. S. Enfield | Chris Bailey | Piotr Pawlik | James W. Holding | Jack Davies Hodgkinson | T. Mourikis | C. Collins-Fekete | D. Biswas | A. Huebner | Yin Wu | M. W. Sunderland | L. Ensell | A. Karamani | Cristina Naceur-Lombardelli | Haoran Zhai | A. Bajaj | Gillian Price | Kayleigh Gilbert | A. Chaturvedi | F. Granato | Vijay Joshi | M. Carter | F. Gomes | A. Montero | D. Patrini | Reena Khiroya | E. Hoogenboom | A. Sharp | H. Dhanda | Daniel Kaniu | S. Booth | C. Dick | M. Asif | O. Chervova | M. Litovchenko | P. Hobson | R. Bilancia | Eric Lim | Antonia Toncheva | F. Gimeno-Valiente | M. Scotland | Wei-Ting Lu | S. Vanloo | S. Dulloo | F. Gálvez-Cancino | Mohammed Khalil | Domenic Marrone | M. Dióssy | S. Bola | Magali N. Taylor | Junaid Choudhary | Nicola Totten | Mpho Malima | Wing-Kin Liu | D. Karagianni | K. Bhakhri | R. Boyles | B. Chain | Jason Lester | M. F. Chowdhry | R. Vendramin | E. Boleti | J. Richards | Lily Robinson | C. Swanton | P. Gorman | Xiaoxi Pan | Stephan Beck | S. Ung | N. Mcgranahan | Claire Wilson | K. Thol | M. Escudero | A. Rowan | David S. Lawrence | M. Hayward | H. Aerts | C. Weeden | Helen Shackleford | Tom L Kaufmann | Paulina Prymas | Olivia Lucas | Neil Magno | Foteini Athanasopoulou | Kristiana Grigoriadis | A. Bunkum | Vittorio Barbè | Samuel Gamble | Kitty Chan | R. Leslie | A. Devaraj | Paul Ashford | D. Chuter | J. Lam | Emma C Colliver | A. Osman | C. Puttick | H. Cheyne | Ignacio Matos | S. Ward | Roberto Salgado | M. Sokač | R. Schwarz | R. Stephens | J. Kisistók | L. Joseph | Nádia Fernandes | Pratibha Shah | S. Zaccaria | D. Pearce | Mathew Thomas | Krupa Thakkar | S. Janes | W. Cheema | J. Le Quesne | C. Proli | K. Ng | James R. M. Black | Akshay J. Patel | C. Castignani | S. Hessey | M. Hill | Mohamad Tufail | K. Ang | S. Richardson | Kayalvizhi Selvaraju | James Wilson | Lydia Scarlett | Monica Sivakumar | R. Bentham | Fleur Monk | Gary Middleton | Papawadee Ingram | Anca-Ioana Grapa | Camilla Pilotti | Yutaka Naito | Carlos Martínez-Ruiz | A. Procter | Martin D. Forster | Kate Brown | Tracy Cruickshank | Azmina Sodha-Ramdeen | Gurdeep Matharu | Christer Lacson | Corentin Richard | Georgia Stavrou | Gerasimos Mastrokalos | Michelle Leung | Zoe Ramsden | T. Clark | S. Austin | Peter John Jason F. Amrita Apostolos Azmina Keng Mohamad Van Loo Le Quesne Lester Bajaj Nakas Sodha- | Abigail Bunkum | G. Wilson | R. Shah | Javier Herrero | Saioa López | Angeliki Karamani | S. Saghafinia | Sharon P. Vanloo

[1]  Angela E. Leek,et al.  Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA , 2023, Nature.

[2]  Nicolai J. Birkbak,et al.  The evolution of lung cancer and impact of subclonal selection in TRACERx , 2023, Nature.

[3]  Nicolai J. Birkbak,et al.  The evolution of non-small cell lung cancer metastases in TRACERx , 2023, Nature.

[4]  Angela E. Leek,et al.  Genomic–transcriptomic evolution in lung cancer and metastasis , 2023, Nature.

[5]  Angel Rubio,et al.  Rediscover: an R package to identify mutually exclusive mutations , 2021, Bioinform..

[6]  A. Nicholson,et al.  The 2021 WHO Classification of Lung Tumors: Impact of advances since 2015. , 2021, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[7]  Jason D. Buenrostro,et al.  SMARCA4 inactivation promotes lineage-specific transformation and early metastatic features in the lung. , 2021, Cancer discovery.

[8]  L. Borsu,et al.  Comprehensive Molecular and Clinicopathologic Analysis of 200 Pulmonary Invasive Mucinous Adenocarcinomas Identifies Distinct Characteristics of Molecular Subtypes , 2021, Clinical Cancer Research.

[9]  Nicolò Riggi,et al.  Non-genetic evolution drives lung adenocarcinoma spatial heterogeneity and progression. , 2021, Cancer discovery.

[10]  R. Haba,et al.  The epithelial-mesenchymal transition phenotype is associated with the frequency of tumor spread through air spaces (STAS) and a High risk of recurrence after resection of lung carcinoma. , 2021, Lung cancer.

[11]  Nicolai J. Birkbak,et al.  Pervasive chromosomal instability and karyotype order in tumour evolution , 2020, Nature.

[12]  David R. Jones,et al.  The Underlying Tumor Genomics of Predominant Histologic Subtypes in Lung Adenocarcinoma. , 2020, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[13]  B. Taylor,et al.  The Genomic Landscape of SMARCA4 Alterations and Associations with Outcomes in Patients with Lung Cancer , 2020, Clinical Cancer Research.

[14]  A. Nicholson,et al.  A Grading system for invasive pulmonary adenocarcinoma: a proposal from the IASLC pathology committee. , 2020, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[15]  Nicolai J. Birkbak,et al.  Geospatial immune variability illuminates differential evolution of lung adenocarcinoma , 2020, Nature Medicine.

[16]  Morten Nielsen,et al.  NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data , 2020, Nucleic Acids Res..

[17]  Ash A. Alizadeh,et al.  Integrating genomic features for non-invasive early lung cancer detection , 2020, Nature.

[18]  David R. Jones,et al.  SMARCA4-Deficient Thoracic Sarcomatoid Tumors Represent Primarily Smoking-Related Undifferentiated Carcinomas Rather Than Primary Thoracic Sarcomas , 2019, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[19]  Jie Ma,et al.  Comparative study on the mutational profile of adenocarcinoma and squamous cell carcinoma predominant histologic subtypes in Chinese non‐small cell lung cancer patients , 2019, Thoracic cancer.

[20]  Gennady Korotkevich,et al.  Fast gene set enrichment analysis , 2019, bioRxiv.

[21]  C. Rudin,et al.  Spread Through Air Spaces (STAS) Is Prognostic in Atypical Carcinoid, Large Cell Neuroendocrine Carcinoma, and Small Cell Carcinoma of the Lung. , 2019, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[22]  K. Nagayama,et al.  Spread through air spaces is an independent predictor of recurrence in stage III (N2) lung adenocarcinoma. , 2019, Interactive cardiovascular and thoracic surgery.

[23]  David R. Jones,et al.  Comprehensive Next-Generation Sequencing Unambiguously Distinguishes Separate Primary Lung Carcinomas From Intrapulmonary Metastases: Comparison with Standard Histopathologic Approach , 2019, Clinical Cancer Research.

[24]  R. Spriggs,et al.  In situ growth in early lung adenocarcinoma may represent precursor growth or invasive clone outgrowth—a clinically relevant distinction , 2019, Modern Pathology.

[25]  Z. Szallasi,et al.  Neoantigen-directed immune escape in lung cancer evolution , 2019, Nature.

[26]  G. Salbreux,et al.  Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis , 2019, Nature.

[27]  David R. Jones,et al.  Procedure‐Specific Risk Prediction for Recurrence in Patients Undergoing Lobectomy or Sublobar Resection for Small (≤2 cm) Lung Adenocarcinoma: An International Cohort Analysis , 2019, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[28]  David R. Jones,et al.  Lobectomy Is Associated with Better Outcomes than Sublobar Resection in Spread through Air Spaces (STAS)‐Positive T1 Lung Adenocarcinoma: A Propensity Score–Matched Analysis , 2019, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[29]  Steven J. M. Jones,et al.  Oncogenic Signaling Pathways in The Cancer Genome Atlas. , 2018, Cell.

[30]  Yi-long Wu,et al.  Genetic and Immune Profiles of Solid Predominant Lung Adenocarcinoma Reveal Potential Immunotherapeutic Strategies , 2018, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[31]  Shun‐ichi Watanabe,et al.  Prognostic Impact of Margin Distance and Tumor Spread Through Air Spaces in Limited Resection for Primary Lung Cancer , 2017, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[32]  Angela E. Leek,et al.  Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution , 2017, Cell.

[33]  R. Bloigu,et al.  Histological features of malignancy correlate with growth patterns and patient outcome in lung adenocarcinoma , 2017, Histopathology.

[34]  Carsten Denkert,et al.  Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothe , 2017, Advances in anatomic pathology.

[35]  R. Yamada,et al.  HLA‐HD: An accurate HLA typing algorithm for next‐generation sequencing data , 2017, Human mutation.

[36]  Nicolai J. Birkbak,et al.  Tracking the Evolution of Non‐Small‐Cell Lung Cancer , 2017, The New England journal of medicine.

[37]  Ashwini Naik,et al.  Phylogenetic ctDNA analysis depicts early stage lung cancer evolution , 2017, Nature.

[38]  W. Travis,et al.  Spread through Air Spaces (STAS) Is an Independent Predictor of Recurrence and Lung Cancer–Specific Death in Squamous Cell Carcinoma , 2017, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[39]  Carsten Denkert,et al.  Standardized evaluation of tumor-infiltrating lymphocytes in breast cancer: results of the ring studies of the international immuno-oncology biomarker working group , 2016, Modern Pathology.

[40]  J. Taube,et al.  Control of PD-L1 Expression by Oncogenic Activation of the AKT-mTOR Pathway in Non-Small Cell Lung Cancer. , 2016, Cancer research.

[41]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[42]  David R Jones,et al.  Solid Predominant Histologic Subtype in Resected Stage I Lung Adenocarcinoma Is an Independent Predictor of Early, Extrathoracic, Multisite Recurrence and of Poor Postrecurrence Survival. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[43]  A. McKenna,et al.  Paired Exome Analysis of Barrett’s Esophagus and Adenocarcinoma , 2015, Nature Genetics.

[44]  A. Warth,et al.  Prognostic Impact of Intra-alveolar Tumor Spread in Pulmonary Adenocarcinoma , 2015, The American journal of surgical pathology.

[45]  David R. Jones,et al.  Tumor Spread through Air Spaces is an Important Pattern of Invasion and Impacts the Frequency and Location of Recurrences after Limited Resection for Small Stage I Lung Adenocarcinomas , 2015, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[46]  Z. Szallasi,et al.  Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data , 2014, Annals of oncology : official journal of the European Society for Medical Oncology.

[47]  J. Mesirov,et al.  The Molecular Signatures Database (MSigDB) hallmark gene set collection. , 2015, Cell systems.

[48]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[49]  H Dienemann,et al.  Tumour cell proliferation (Ki-67) in non-small cell lung cancer: a critical reappraisal of its prognostic role , 2014, British Journal of Cancer.

[50]  A. Bouchard-Côté,et al.  PyClone: statistical inference of clonal population structure in cancer , 2014, Nature Methods.

[51]  Prasad S Adusumilli,et al.  Impact of micropapillary histologic subtype in selecting limited resection vs lobectomy for lung adenocarcinoma of 2cm or smaller. , 2013, Journal of the National Cancer Institute.

[52]  M. Ladanyi,et al.  KRAS mutations are associated with solid growth pattern and tumor-infiltrating leukocytes in lung adenocarcinoma , 2013, Modern Pathology.

[53]  Jiri Bartek,et al.  Replication stress links structural and numerical cancer chromosomal instability , 2013, Nature.

[54]  Eric Lim,et al.  Prognostic Significance of Predominant Histologic Pattern and Nuclear Grade in Resected Adenocarcinoma of the Lung: Potential Parameters for a Grading System , 2013, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[55]  Justin Guinney,et al.  GSVA: gene set variation analysis for microarray and RNA-Seq data , 2013, BMC Bioinformatics.

[56]  Iver Petersen,et al.  Reproducibility of histopathological subtypes and invasion in pulmonary adenocarcinoma. An international interobserver study , 2012, Modern Pathology.

[57]  Prasad S Adusumilli,et al.  A grading system combining architectural features and mitotic count predicts recurrence in stage I lung adenocarcinoma , 2012, Modern Pathology.

[58]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[59]  Akihiko Yoshizawa,et al.  Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases , 2011, Modern Pathology.

[60]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[61]  C. Perou,et al.  Allele-specific copy number analysis of tumors , 2010, Proceedings of the National Academy of Sciences.

[62]  P. Massion,et al.  Role of chromosome 3q amplification in lung cancer. , 2008, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[63]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[64]  L. Chin,et al.  High-resolution genomic profiles of human lung cancer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  P. Sham,et al.  A note on the calculation of empirical P values from Monte Carlo procedures. , 2002, American journal of human genetics.

[66]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .