Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia

The Nazca, Caribbean, and South America plates meet in northwestern South America where the northern end of the Andean volcanic arc and Wadati-Benioff zone seismicity indicate ongoing subduction. However, the termination of Quaternary volcanism at ~5.5°N and eastward offset in seismicity underneath Colombia suggest the presence of complex slab geometry. To help link geometry to dynamics, we analyze SKS splitting for 38 broadband stations of the Colombian national network. Measurements of fast polarization axes in western Colombia close to the trench show dominantly trench-perpendicular orientations. Orientations measured at stations in the back arc, farther to the east, however, abruptly change to roughly trench parallel anisotropy. This may indicate along-arc mantle flow, possibly related to the suggested “Caldas” slab tear, or a lithospheric signature, but smaller-scale variations in anisotropy remain to be explained. Our observations are atypical globally and challenge our understanding of the complexities of subduction zone seismic anisotropy.

[1]  Masataka Ando,et al.  Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone , 1987 .

[2]  P. Mann,et al.  Tearing and Breaking Off of Subducted Slabs as the Result of Collision of the Panama Arc‐Indenter with Northwestern South America , 2013 .

[3]  P. Silver SEISMIC ANISOTROPY BENEATH THE CONTINENTS: Probing the Depths of Geology , 1996 .

[4]  J. Havskov,et al.  Crustal structure and local seismicity in Colombia , 2001 .

[5]  G. Barruol,et al.  Identifying global seismic anisotropy patterns by correlating shear-wave splitting and surface-wave data , 2009 .

[6]  J. Kendall,et al.  Sub-slab mantle flow parallel to the Caribbean plate boundaries: Inferences from SKS splitting , 2008 .

[7]  W. D. Pennington Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America , 1981 .

[8]  M. Assumpção,et al.  Tectonic implications of S-wave anisotropy beneath SE Brazil , 1996 .

[9]  P. Silver,et al.  Laboratory and seismological observations of lower mantle isotropy , 1995 .

[10]  R. Katz,et al.  Melting above the anhydrous solidus controls the location of volcanic arcs , 2010, Nature.

[11]  R. Russo,et al.  Trench-Parallel Flow Beneath the Nazca Plate from Seismic Anisotropy , 1994, Science.

[12]  R. Hilst,et al.  Upper mantle anisotropy beneath Japan from shear wave splitting , 2005 .

[13]  Alexander Rudloff,et al.  Shear wave anisotropy in the upper mantle beneath the Nazca Plate in northern Chile , 1998 .

[14]  C. Faccenna,et al.  A Review of the Role of Subduction Dynamics for Regional and Global Plate Motions , 2009 .

[15]  G. Zandt,et al.  Toroidal mantle flow through the western U.S. slab window , 2008 .

[16]  A. Vauchez,et al.  Shear wave splitting in SE Brazil: an effect of active or fossil upper mantle flow, or both?☆ , 2003 .

[17]  A. Vauchez,et al.  Upper mantle anisotropy in SE and Central Brazil from SKS splitting: Evidence of asthenospheric flow around a cratonic keel , 2006 .

[18]  J. Schneider,et al.  Polarities of P and S waves, and shear wave splitting observed from the Bucaramanga Nest, Colombia , 1991 .

[19]  P. Bird An updated digital model of plate boundaries , 2003 .

[20]  J. Crocker,et al.  References and Notes Supporting Online Material Materials and Methods References Movies S1 and S2 the Subduction Zone Flow Field from Seismic Anisotropy: a Global View , 2022 .

[21]  T. Song,et al.  Subduction of oceanic asthenosphere: A critical appraisal in central Alaska , 2012 .

[22]  F. Vernon,et al.  Constraints on mantle flow at the Caribbean–South American plate boundary inferred from shear wave splitting , 2009 .

[23]  C. Kincaid,et al.  Patterns in seismic anisotropy driven by rollback subduction beneath the High Lava Plains , 2011 .

[24]  E. Engdahl,et al.  Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin , 2000 .

[25]  R. Russo,et al.  Shear-wave splitting in northeast Venezuela, Trinidad, and the eastern Caribbean , 1996 .

[26]  J. W. Rosa,et al.  Crust and upper mantle structure in central Brazil derived by receiver functions and SKS splitting analysis , 2012 .

[27]  J. Angelier,et al.  Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes , 2005 .

[28]  M. Long CONSTRAINTS ON SUBDUCTION GEODYNAMICS FROM SEISMIC ANISOTROPY , 2013 .

[29]  P. Silver,et al.  Shear-wave splitting variation over short spatial scales on continents , 1994 .

[30]  N. Ribe,et al.  Subduction‐induced mantle flow, finite strain, and seismic anisotropy: Numerical modeling , 2014 .

[31]  P. Olson,et al.  A laboratory model of subduction zone anisotropy , 1998 .

[32]  S. Lee,et al.  Upper-mantle seismic anisotropy from SKS splitting in the South American stable platform: A test of asthenospheric flow models beneath the lithosphere , 2011 .

[33]  N. Hoyos,et al.  Arc‐continent collision and orocline formation: Closing of the Central American seaway , 2012 .

[34]  Impacts of nonbreaking wave‐stirring‐induced mixing on the upper ocean thermal structure and typhoon intensity in the South China Sea , 2014 .

[35]  F. Funiciello,et al.  Subduction zone geodynamics , 2009 .

[36]  S. Lebedev,et al.  On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography , 2012 .

[37]  Harmen Bijwaard,et al.  Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia) , 2000 .

[38]  Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the Mérida Andes , 2011 .

[39]  A search for source side mantle anisotropy , 1992 .

[40]  C. Demets,et al.  Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame , 2011 .

[41]  T. Song,et al.  Subduction of oceanic asthenosphere: Evidence from sub‐slab seismic anisotropy , 2012 .

[42]  W. D. Pennington,et al.  Microseismicity and focal mechanisms of the intermediate-depth Bucaramanga Nest, Colombia , 1987 .

[43]  P. V. van Keken,et al.  Effect of three‐dimensional slab geometry on deformation in the mantle wedge: Implications for shear wave anisotropy , 2008 .

[44]  A. Vauchez,et al.  Upper Mantle Anisotropy In Se And Central Brazil From Sks Splitting , 2001 .

[45]  A. Milev,et al.  Global patterns of azimuthal anisotropy and deformations in the continental mantle , 1992 .

[46]  T. Becker,et al.  Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow , 2014 .

[47]  Paul G. Silver,et al.  Shear wave splitting and subcontinental mantle deformation , 1991 .

[48]  R. Allen,et al.  Seismic anisotropy beneath Cascadia and the Mendocino triple junction: Interaction of the subducting slab with mantle flow , 2010 .

[49]  R. Russo,et al.  Seismic anisotropy in the region of the Chile margin triple junction , 1999 .

[50]  D. McKenzie,et al.  Finite deformation during fluid flow , 1979 .

[51]  K. Fischer,et al.  The influence of plate motions on three-dimensional back arc mantle flow and shear wave splitting , 2000 .

[52]  Philip Skemer,et al.  Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies , 2008 .

[53]  A. Allam,et al.  Constraints on the tectonic evolution of the westernmost Mediterranean and northwestern Africa from shear wave splitting analysis , 2013 .

[54]  F. Scherbaum,et al.  Crustal and upper mantle structure in the Amazon region (Brazil) determined with broadband mobile stations , 2002 .

[55]  T. Wallace,et al.  Shear wave anisotropy beneath the Andes from the BANJO, SEDA, and PISCO experiments , 2000 .

[56]  A. Levander,et al.  Asthenospheric flow and lithospheric evolution near the Mendocino Triple Junction , 2012 .

[57]  R. Hoffmann,et al.  Upper mantle anisotropy beneath the Geoscope stations , 1999 .

[58]  S. Solomon,et al.  Shear‐wave splitting beneath the Galápagos archipelago , 2004 .

[59]  C. Conrad,et al.  Origin of azimuthal seismic anisotropy in oceanic plates and mantle , 2014 .

[60]  W. Strauch,et al.  Constraints on upper mantle anisotropy surrounding the Cocos slab from SK(K)S splitting , 2010 .

[61]  M. Faccenda,et al.  Seismic anisotropy around subduction zones: Insights from three‐dimensional modeling of upper mantle deformation and SKS splitting calculations , 2013 .

[62]  M. Savage,et al.  Shear-wave splitting beneath western United States in relation to plate tectonics , 1995 .

[63]  G. Masters,et al.  CRUST1.0: An Updated Global Model of Earth's Crust , 2012 .

[64]  D. Mainprice Seismic Anisotropy of the Deep Earth from a Mineral and Rock Physics Perspective , 2007 .

[65]  D. Wiens,et al.  A teleseismic shear-wave splitting study to investigate mantle flow around South America and implications for plate-driving forces , 2002 .

[66]  R. Hilst,et al.  Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America , 1993 .

[67]  A. Vauchez,et al.  Shear wave splitting around the northern Atlantic: frozen Pangaean lithospheric anisotropy? , 1997 .

[68]  Christophe Zaroli,et al.  SplitLab: A shear-wave splitting environment in Matlab , 2008, Comput. Geosci..

[69]  T. Becker,et al.  Mantle dynamics and seismic anisotropy , 2010 .

[70]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[71]  T. Becker,et al.  Mantle flow deflected by interactions between subducted slabs and cratonic keels , 2012 .