Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence.

We perform spectrally resolved cathodoluminescence (CL) imaging nanoscopy using a 30 keV electron beam to identify the resonant modes of an ultrathin (20 nm), laterally tapered plasmonic Ag nanostrip antenna. We resolve with deep-subwavelength resolution four antenna resonances (resonance orders m = 2-5) that are ascribed to surface plasmon polariton standing waves that are confined on the strip. We map the local density of states on the strip surface and show that it has contributions from symmetric and antisymmetric surface plasmon polariton modes, each with a very different mode index. This work illustrates the power of CL experiments that can visualize hidden modes that for symmetry reasons have been elusive in optical light scattering experiments.

[1]  A. Polman,et al.  Fabry–Pérot resonators for surface plasmon polaritons probed by cathodoluminescence , 2009 .

[2]  Mark L Brongersma,et al.  Spectral properties of plasmonic resonator antennas. , 2008, Optics express.

[3]  Ewold Verhagen,et al.  Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy , 2006 .

[4]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[5]  E. Economou Surface Plasmons in Thin Films , 1969 .

[6]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[7]  Sergey I. Bozhevolnyi,et al.  Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration , 2008 .

[8]  Mark L Brongersma,et al.  Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. , 2009, Optics express.

[9]  Ewold Verhagen,et al.  Nanowire plasmon excitation by adiabatic mode transformation. , 2009, Physical review letters.

[10]  Arash Farhang,et al.  Plasmon delocalization onset in finite sized nanostructures. , 2011, Optics express.

[11]  L. Novotný,et al.  Antennas for light , 2011 .

[12]  P. Berini Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures , 2000 .

[13]  Harry A. Atwater,et al.  Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence , 2009 .

[14]  Thomas Søndergaard,et al.  Metal nano-strip optical resonators. , 2007, Optics express.

[15]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[16]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[17]  Harry A. Atwater,et al.  Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model , 2005 .

[18]  Edward S. Barnard,et al.  Photocurrent mapping of near-field optical antenna resonances. , 2011, Nature nanotechnology.

[19]  A. Polman,et al.  Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy. , 2007, Nano letters.

[20]  Peter Nordlander,et al.  Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. , 2009, ACS nano.

[21]  A. Polman,et al.  Modal decomposition of surface--plasmon whispering gallery resonators. , 2009, Nano letters.

[22]  Martijn Wubs,et al.  Surface plasmon modes of a single silver nanorod: an electron energy loss study. , 2011, Optics express.