Transformer Core Parameter Identification Using Frequency Response Analysis

We present a novel model-based approach for parameter identification of a laminated core, such as magnetic permeability and electrical conductivity, of power transformers on the basis of frequency response analysis (FRA) measurements. The method establishes a transformer core model using the duality principle between magnetic and electrical circuits for parameter identification with genetic algorithms. We use reference input impedance frequency responses, calculated by a well-known lumped parameter model of a three-phase transformer and finite-element computations, to analyze identification accuracy of the method. The results verify the ability of the approach to accurately identify the core lamination parameters with respect to the reference values. The approach can be used for parameter identification of a demagnetized core with known geometrical parameters when the core lamination samples are unavailable for experimental tests. The approach can also be employed for transformer core modeling and FRA result interpretation at low frequencies.

[1]  M. Sanaye-Pasand,et al.  Transformer core modeling as applied to slow transients and protective studies , 2006, 2006 IEEE Power India Conference.

[2]  N. Abeywickrama,et al.  High-Frequency Modeling of Power Transformers for Use in Frequency Response Analysis (FRA) , 2008, IEEE Transactions on Power Delivery.

[3]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[4]  Henry Wu,et al.  Winding deformation identification using a particle swarm optimiser with passive congregation for power transformers , 2006 .

[5]  J. Pleite,et al.  Power transformer core fault diagnosis using frequency response analysis , 2006, MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference.

[6]  A. J. Moses,et al.  Electrical steels : past, present and future developments , 1990 .

[7]  D. Roger,et al.  High frequency extension of non‐linear models of laminated cores , 2006 .

[8]  Marek Florkowski,et al.  Detection of transformer winding deformations based on the transfer function: measurements and simulations , 2003 .

[9]  G. Sassone,et al.  High-frequency power transformer model for circuit simulation , 1997 .

[10]  M. Poloujadoff,et al.  New transformer model including joint air gaps and lamination anisotropy , 1998 .

[11]  Bruce A. Mork,et al.  Five-legged wound-core transformer model: derivation, parameters, implementation and evaluation , 1999 .

[12]  K.D.T. Ngo,et al.  A behavioral model for frequency-dependent hysteresis in power ferrites , 2004, IEEE Transactions on Magnetics.

[13]  Shu Yuen Ron Hui,et al.  Experimental determination of stray capacitances in high frequency transformers , 2003 .

[14]  L. Vu-Quoc,et al.  Analysis of Power Magnetic Components With Nonlinear Static Hysteresis: Proper Orthogonal Decomposition and Model Reduction , 2007, IEEE Transactions on Magnetics.

[15]  S. Gubanski,et al.  Determination of Complex Permeability of Silicon Steel for Use in High-Frequency Modeling of Power Transformers , 2008, IEEE Transactions on Magnetics.

[16]  Wolfgang Banzhaf,et al.  Genetic Programming: An Introduction , 1997 .

[17]  G. Slemon Magnetoelectric Devices: Transducers, Transformers and Machines , 1966 .

[18]  S. Gubanski,et al.  Multiscale Computations of Parameters of Power Transformer Windings at High Frequencies. Part I: Small-Scale Level , 2007, IEEE Transactions on Magnetics.

[19]  K.G.N.B. Abeywickrama,et al.  Computation of Parameters of Power Transformer Windings for Use in Frequency Response Analysis , 2007, IEEE Transactions on Magnetics.

[20]  Eilert Bjerkan High frequency modeling of power transformers: Stresses and Diagnostics , 2005 .

[21]  S.M. Gubanski,et al.  Exploring possibilities for characterization of power transformer insulation by frequency response analysis (FRA) , 2006, IEEE Transactions on Power Delivery.

[22]  Zhongdong Wang,et al.  FRA low frequency characteristic study using duality transformer core modeling , 2008, 2008 International Conference on Condition Monitoring and Diagnosis.

[23]  Vahid Rashtchi,et al.  Using a genetic algorithm for parameter identification of transformer R-L-C-M model , 2006 .

[24]  J.A. Cobos,et al.  Obtaining a frequency dependent and effect distributed model of magnetic components from actual measurements , 1996, Proceedings of Intelec'96 - International Telecommunications Energy Conference.

[25]  E. C. Cherry The Duality between Interlinked Electric and Magnetic Circuits and the Formation of Transformer Equivalent Circuits , 1949 .

[26]  P. Marketos,et al.  Generalization of the Classical Method for Calculating Dynamic Hysteresis Loops in Grain-Oriented Electrical Steels , 2008, IEEE Transactions on Magnetics.

[27]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[28]  S. Gubanski,et al.  Multiscale Computations of Parameters of Power Transformer Windings at High Frequencies. Part II: Large-Scale Level , 2007, IEEE Transactions on Magnetics.

[29]  Christine M. Anderson-Cook Practical Genetic Algorithms (2nd ed.): Randy L. Haupt and Sue Ellen Haupt , 2005 .

[30]  Marian K. Kazimierczuk,et al.  Self-capacitance of inductors , 1997 .

[31]  S. A. Ryder Diagnosing Transformer Faults Using Frequency Response , 2003 .

[32]  N. Abeywickrama,et al.  Effect of Core Magnetization on Frequency Response Analysis (FRA) of Power Transformers , 2008, IEEE Transactions on Power Delivery.

[33]  K. Feser,et al.  Transfer Function Method to Diagnose Axial Displacement and Radial Deformation of Transformer Winding , 2002, IEEE Power Engineering Review.