Globally Solving Nonconvex Quadratic Programs via Linear Integer Programming Techniques

A quadratic program (QP) is a well-studied fundamental NP-hard optimization problem which optimizes a quadratic objective over a set of linear constraints. In this paper, we reformulate QPs as a mixed-integer linear problem (MILP). This is done via the reformulation of QP as a linear complementary problem, and the use of binary variables together with some fundamental results on the solution of perturbed linear systems, to model the complementary constraints. Reformulating non-convex QPs as MILPs provides an advantageous way to obtain global solutions as it allows to use current state-of-the-art MILP solvers. To illustrate, we compare the performance of our solution approach with the current benchmark global QP solver quadprogBB on a large variety of QP test instances. The MATLAB code, called quadprogIP, and the instances used to perform these numerical experiments are publicly available at this https URL

[1]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[2]  J. P. Evans On constraint qualifications in nonlinear programming , 1970 .

[3]  O. Mangasarian A Condition Number for Linear Inequalities and Linear Programs. , 1981 .

[4]  Y. Nesterov Semidefinite relaxation and nonconvex quadratic optimization , 1998 .

[5]  Kurt M. Anstreicher,et al.  Separating doubly nonnegative and completely positive matrices , 2013, Math. Program..

[6]  M. Kojima,et al.  Second order cone programming relaxation of nonconvex quadratic optimization problems , 2001 .

[7]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[8]  C. Floudas,et al.  A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—I. Theory , 1990 .

[9]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[10]  Masakazu Kojima,et al.  Exact Solutions of Some Nonconvex Quadratic Optimization Problems via SDP and SOCP Relaxations , 2003, Comput. Optim. Appl..

[11]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[12]  David Yang Gao,et al.  Canonical Duality Theory and Solutions to Constrained Nonconvex Quadratic Programming , 2004, J. Glob. Optim..

[13]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[14]  Nicholas I. M. Gould,et al.  CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.

[15]  Uriel G. Rothblum,et al.  Approximations to Solutions to Systems of Linear Inequalities , 1995, SIAM J. Matrix Anal. Appl..

[16]  Mirjam Dür,et al.  Copositive Programming – a Survey , 2010 .

[17]  Robert J. Vanderbei,et al.  An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..

[18]  Franco Giannessi,et al.  Nonconvex Quadratic Programs, Linear Complementarity Problems, and Integer Linear Programs , 1973, Optimization Techniques.

[19]  Cristian Dobre,et al.  Exploiting symmetry in copositive programs via semidefinite hierarchies , 2015, Math. Program..

[20]  A. Lodi,et al.  SOLVING STANDARD QUADRATIC PROGRAMMING BY CUTTING PLANES , 2016 .

[21]  Samuel Burer,et al.  On the copositive representation of binary and continuous nonconvex quadratic programs , 2009, Math. Program..

[22]  Samuel Burer,et al.  Optimizing a polyhedral-semidefinite relaxation of completely positive programs , 2010, Math. Program. Comput..

[23]  Fabio Tardella,et al.  A clique algorithm for standard quadratic programming , 2008, Discret. Appl. Math..

[24]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[25]  Xi Yin Zheng,et al.  Hoffman’s Least Error Bounds for Systems of Linear Inequalities , 2004, J. Glob. Optim..

[26]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[27]  Samuel Burer,et al.  Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound , 2009, Comput. Optim. Appl..

[28]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[29]  Samuel Burer,et al.  Globally solving nonconvex quadratic programming problems via completely positive programming , 2011, Mathematical Programming Computation.

[30]  Jeff T. Linderoth,et al.  Solving Box-Constrained Nonconvex Quadratic Programs , 2016 .

[31]  Mirjam Dür,et al.  An Adaptive Linear Approximation Algorithm for Copositive Programs , 2009, SIAM J. Optim..

[32]  Pierre Hansen,et al.  Global minimization of indefinite quadratic functions subject to box constraints , 1991 .

[33]  James Renegar,et al.  A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.

[34]  Marco Locatelli,et al.  Copositivity cuts for improving SDP bounds on the clique number , 2010, Math. Program..

[35]  Leo Liberti,et al.  Introduction to Global Optimization , 2006 .

[36]  Christodoulos A. Floudas,et al.  GloMIQO: Global mixed-integer quadratic optimizer , 2012, Journal of Global Optimization.

[37]  Immanuel M. Bomze,et al.  On Standard Quadratic Optimization Problems , 1998, J. Glob. Optim..

[38]  Jing Hu,et al.  On linear programs with linear complementarity constraints , 2011, Journal of Global Optimization.