NOTES ON THE DPRM PROPERTY FOR LISTABLE STRUCTURES

A celebrated result by M. Davis, H. Putnam, J. Robinson, and Y. Matiyasevich shows that a set of integers is listable if and only if it is positive existentially definable in the language of arithmetic. We investigate analogues of this result over structures endowed with a listable presentation. When such an analogue holds, the structure is said to have the DPRM property. We prove several results addressing foundational aspects around this problem, such as uniqueness of the listable presentation, transference of the DPRM property under interpretation, and its relation with positive existential bi-interpretability. A first application of our results is the rigorous proof of (strong versions of) several folklore facts regarding transference of the DPRM property. Another application of the theory we develop is that it will allow us to link various Diophantine conjectures to the question of whether the DPRM property holds for global fields. This last topic includes a study of the number of existential quantifiers needed to define a Diophantine set.

[1]  Marvin Minsky,et al.  Unrecognizable Sets of Numbers , 1966, J. ACM.

[2]  Recursively enumerable sets of polynomials over a finite field are Diophantine , 2007 .

[3]  Laurent Moret-Bailly Sur la d\'efinissabilit\'e existentielle de la non-nullit\'e dans les anneaux , 2007, 0707.4449.

[4]  Alan Cobham,et al.  Uniform tag sequences , 1972, Mathematical systems theory.

[5]  An undecidability result for power series rings of positive characteristic , 1987 .

[6]  Martin Ziegler,et al.  Quasi finitely axiomatizable totally categorical theories , 1986, Ann. Pure Appl. Log..

[7]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[8]  J. Demeyer Diophantine sets of polynomials over number fields , 2008, 0807.1970.

[9]  Diederich Hinrichsen,et al.  Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.

[10]  On Diophantine sets over polynomial rings , 1999 .

[11]  L. Lipshitz,et al.  Diophantine Sets over Some Rings of Algebraic Integers , 1978 .

[12]  Arno Fehm,et al.  Existential rank and essential dimension of diophantine sets , 2021 .

[13]  Peter Swinnerton-Dyer,et al.  Double fibres and double covers: paucity of rational points , 1997 .

[14]  Erik Massop Hilbert's tenth problem , 2012 .

[15]  Mikolás Janota,et al.  Digital Object Identifier (DOI): , 2000 .

[16]  Julia Robinson,et al.  Definability and decision problems in arithmetic , 1949, Journal of Symbolic Logic.

[17]  J. Kollár Diophantine subsets of function fields of curves , 2007, 0708.3451.

[18]  Alexandra Shlapentokh Extension of Hilbert's tenth problem to some algebraic number fields , 1989 .

[19]  H. Putnam,et al.  The Decision Problem for Exponential Diophantine Equations , 1961 .

[20]  J. Denef DIOPHANTINE SETS OVER ALGEBRAIC INTEGER RINGS , 2010 .

[21]  K. Rubin,et al.  Diophantine stability , 2015, 1503.04642.

[22]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[23]  R. Cori,et al.  Recursion theory, Gödel's theorems, set theory, model theory , 2001 .

[24]  Carlos R. Videla Hilbert’s tenth problem for rational function fields in characteristic 2 , 1994 .

[25]  J. Shepherdson,et al.  Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[26]  Barry Mazur,et al.  The Topology of Rational Points , 1992, Exp. Math..

[27]  Diophantine sets over , 1978 .

[28]  Jeroen Demeyer,et al.  Diophantine Sets of polynomials over Algebraic Extensions of the Rationals , 2014, J. Symb. Log..

[29]  H. N. Shapiro,et al.  Diophantine relationships between algebraic number fields , 1989 .

[30]  Alexandra Shlapentokh Hilbert's Tenth Problem: Diophantine Classes and Extensions to Global Fields , 2006 .

[31]  J. Milne Elliptic Curves , 2020 .

[32]  Yu. L. Ershov Positive equivalences , 1971 .

[33]  Gilles Christol,et al.  Ensembles Presque Periodiques k-Reconnaissables , 1979, Theor. Comput. Sci..

[34]  Thanases Pheidas,et al.  Hilbert's Tenth Problem for fields of rational functions over finite fields , 1991 .

[35]  B. Poonen,et al.  Diophantine definability of infinite discrete nonarchimedean sets and Diophantine models over large subrings of number fields , 2004, math/0408271.

[36]  Jean-Pierre Serre,et al.  Lectures On The Mordell-Weil Theorem , 1989 .

[37]  T. Pheidas,et al.  Division-ample sets and the Diophantine problem for rings of integers , 2003, math/0312382.

[38]  Topology of diophantine sets: remarks on Mazur's conjectures , 2000, math/0006140.

[39]  J. Denef Diophantine sets over z[t] , 1978 .

[40]  Klaus Weihrauch,et al.  Weakly Computable Real Numbers , 2000, J. Complex..

[41]  Bjorn Poonen Using Elliptic Curves of Rank One towards the Undecidability of Hilbert's Tenth Problem over Rings of Algebraic Integers , 2002, ANTS.

[42]  H. Pasten,et al.  Towards Hilbert’s tenth problem for rings of integers through Iwasawa theory and Heegner points , 2019, Mathematische Annalen.

[43]  M. Murty,et al.  Elliptic curves, L-functions, and Hilbert's tenth problem , 2018 .

[44]  Alexandra Shlapentokh Elliptic curves retaining their rank in finite extensions and Hilbert’s Tenth Problem for rings of algebraic numbers , 2008 .

[45]  T. Pheidas Hilbert’s tenth problem for a class of rings of algebraic integers , 1988 .

[46]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[47]  J. Koenigsmann Defining Z in Q , 2010 .

[48]  Matthias Aschenbrenner,et al.  The logical complexity of finitely generated commutative rings , 2016, 1610.04768.

[49]  K. Rubin,et al.  Ranks of twists of elliptic curves and Hilbert’s tenth problem , 2009, 0904.3709.

[50]  J. Demeyer Diophantine Sets over Polynomial Rings and Hilbert's Tenth Problem for Function Fields , 2007 .

[51]  H. Pasten Definability of Frobenius orbits and a result on rational distance sets , 2017 .

[52]  Victor L. Selivanov On Recursively Enumerable Structures , 1996, Ann. Pure Appl. Log..