NOTES ON THE DPRM PROPERTY FOR LISTABLE STRUCTURES
暂无分享,去创建一个
[1] Marvin Minsky,et al. Unrecognizable Sets of Numbers , 1966, J. ACM.
[2] Recursively enumerable sets of polynomials over a finite field are Diophantine , 2007 .
[3] Laurent Moret-Bailly. Sur la d\'efinissabilit\'e existentielle de la non-nullit\'e dans les anneaux , 2007, 0707.4449.
[4] Alan Cobham,et al. Uniform tag sequences , 1972, Mathematical systems theory.
[5] An undecidability result for power series rings of positive characteristic , 1987 .
[6] Martin Ziegler,et al. Quasi finitely axiomatizable totally categorical theories , 1986, Ann. Pure Appl. Log..
[7] S. Shelah,et al. Annals of Pure and Applied Logic , 1991 .
[8] J. Demeyer. Diophantine sets of polynomials over number fields , 2008, 0807.1970.
[9] Diederich Hinrichsen,et al. Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.
[10] On Diophantine sets over polynomial rings , 1999 .
[11] L. Lipshitz,et al. Diophantine Sets over Some Rings of Algebraic Integers , 1978 .
[12] Arno Fehm,et al. Existential rank and essential dimension of diophantine sets , 2021 .
[13] Peter Swinnerton-Dyer,et al. Double fibres and double covers: paucity of rational points , 1997 .
[14] Erik Massop. Hilbert's tenth problem , 2012 .
[15] Mikolás Janota,et al. Digital Object Identifier (DOI): , 2000 .
[16] Julia Robinson,et al. Definability and decision problems in arithmetic , 1949, Journal of Symbolic Logic.
[17] J. Kollár. Diophantine subsets of function fields of curves , 2007, 0708.3451.
[18] Alexandra Shlapentokh. Extension of Hilbert's tenth problem to some algebraic number fields , 1989 .
[19] H. Putnam,et al. The Decision Problem for Exponential Diophantine Equations , 1961 .
[20] J. Denef. DIOPHANTINE SETS OVER ALGEBRAIC INTEGER RINGS , 2010 .
[21] K. Rubin,et al. Diophantine stability , 2015, 1503.04642.
[22] D. S. Arnon,et al. Algorithms in real algebraic geometry , 1988 .
[23] R. Cori,et al. Recursion theory, Gödel's theorems, set theory, model theory , 2001 .
[24] Carlos R. Videla. Hilbert’s tenth problem for rational function fields in characteristic 2 , 1994 .
[25] J. Shepherdson,et al. Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[26] Barry Mazur,et al. The Topology of Rational Points , 1992, Exp. Math..
[27] Diophantine sets over , 1978 .
[28] Jeroen Demeyer,et al. Diophantine Sets of polynomials over Algebraic Extensions of the Rationals , 2014, J. Symb. Log..
[29] H. N. Shapiro,et al. Diophantine relationships between algebraic number fields , 1989 .
[30] Alexandra Shlapentokh. Hilbert's Tenth Problem: Diophantine Classes and Extensions to Global Fields , 2006 .
[31] J. Milne. Elliptic Curves , 2020 .
[32] Yu. L. Ershov. Positive equivalences , 1971 .
[33] Gilles Christol,et al. Ensembles Presque Periodiques k-Reconnaissables , 1979, Theor. Comput. Sci..
[34] Thanases Pheidas,et al. Hilbert's Tenth Problem for fields of rational functions over finite fields , 1991 .
[35] B. Poonen,et al. Diophantine definability of infinite discrete nonarchimedean sets and Diophantine models over large subrings of number fields , 2004, math/0408271.
[36] Jean-Pierre Serre,et al. Lectures On The Mordell-Weil Theorem , 1989 .
[37] T. Pheidas,et al. Division-ample sets and the Diophantine problem for rings of integers , 2003, math/0312382.
[38] Topology of diophantine sets: remarks on Mazur's conjectures , 2000, math/0006140.
[39] J. Denef. Diophantine sets over z[t] , 1978 .
[40] Klaus Weihrauch,et al. Weakly Computable Real Numbers , 2000, J. Complex..
[41] Bjorn Poonen. Using Elliptic Curves of Rank One towards the Undecidability of Hilbert's Tenth Problem over Rings of Algebraic Integers , 2002, ANTS.
[42] H. Pasten,et al. Towards Hilbert’s tenth problem for rings of integers through Iwasawa theory and Heegner points , 2019, Mathematische Annalen.
[43] M. Murty,et al. Elliptic curves, L-functions, and Hilbert's tenth problem , 2018 .
[44] Alexandra Shlapentokh. Elliptic curves retaining their rank in finite extensions and Hilbert’s Tenth Problem for rings of algebraic numbers , 2008 .
[45] T. Pheidas. Hilbert’s tenth problem for a class of rings of algebraic integers , 1988 .
[46] Rodney G. Downey,et al. Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.
[47] J. Koenigsmann. Defining Z in Q , 2010 .
[48] Matthias Aschenbrenner,et al. The logical complexity of finitely generated commutative rings , 2016, 1610.04768.
[49] K. Rubin,et al. Ranks of twists of elliptic curves and Hilbert’s tenth problem , 2009, 0904.3709.
[50] J. Demeyer. Diophantine Sets over Polynomial Rings and Hilbert's Tenth Problem for Function Fields , 2007 .
[51] H. Pasten. Definability of Frobenius orbits and a result on rational distance sets , 2017 .
[52] Victor L. Selivanov. On Recursively Enumerable Structures , 1996, Ann. Pure Appl. Log..