BDDC and FETI-DP for the virtual element method

We build and analyze balancing domain decomposition by constraint and finite element tearing and interconnecting dual primal preconditioners for elliptic problems discretized by the virtual element method. We prove polylogarithmic condition number bounds, independent of the number of subdomains, the mesh size, and jumps in the diffusion coefficients. Numerical experiments confirm the theory.

[1]  Gianmarco Manzini,et al.  The Mimetic Finite Difference Method for Elliptic Problems , 2014 .

[2]  Olof B. Widlund,et al.  Dual‐primal FETI methods for linear elasticity , 2006 .

[3]  Claudio Canuto,et al.  Stabilization of spectral methods by finite element bubble functions , 1994 .

[4]  Olof B. Widlund,et al.  Isogeometric BDDC Preconditioners with Deluxe Scaling , 2014, SIAM J. Sci. Comput..

[5]  Axel Klawonn,et al.  A Highly Scalable Implementation of Inexact Nonlinear FETI-DP Without Sparse Direct Solvers , 2015, ENUMATH.

[6]  Stefano Berrone,et al.  Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method , 2017 .

[7]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[8]  Giuseppe Vacca,et al.  Virtual Element Methods for hyperbolic problems on polygonal meshes , 2016, Comput. Math. Appl..

[9]  Susanne C. Brenner,et al.  BDDC and FETI-DP without matrices or vectors , 2007 .

[10]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[11]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .

[12]  Simone Scacchi,et al.  A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..

[13]  Sergej Rjasanow,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes , 2022 .

[14]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[15]  Jan Mandel,et al.  BDDC and FETI-DP under minimalist assumptions , 2007, Computing.

[16]  Alexandre Ern,et al.  Hybrid high-order methods for variable-diffusion problems on general meshes , 2015 .

[17]  L. Beirao da Veiga,et al.  Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.

[18]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[19]  Bo Dong,et al.  A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..

[20]  Junping Wang,et al.  A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..

[21]  Luca F. Pavarino,et al.  BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS , 2013 .

[22]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[23]  Lourenco Beirao da Veiga,et al.  Stability Analysis for the Virtual Element Method , 2016, 1607.05988.

[24]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[25]  Stefano Giani,et al.  Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains , 2016, IEEE CSE 2016.

[26]  Olof B. Widlund,et al.  FETI‐DP, BDDC, and block Cholesky methods , 2006 .

[27]  Stefano Berrone,et al.  A globally conforming method for solving flow in discrete fracture networks using the Virtual Element Method , 2016 .

[28]  Luca F. Pavarino,et al.  Spectral element FETI-DP and BDDC preconditioners with multi-element subdomains , 2008 .

[29]  Xuemin Tu,et al.  A Three-Level BDDC Algorithm for Mortar Discretizations , 2009, SIAM J. Numer. Anal..

[30]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[31]  A. Klawonn,et al.  Highly scalable parallel domain decomposition methods with an application to biomechanics , 2010 .

[32]  Ivonne Sgura,et al.  Virtual Element Method for the Laplace-Beltrami equation on surfaces , 2016, 1612.02369.

[33]  J. Mandel,et al.  An algebraic theory for primal and dual substructuring methods by constraints , 2005 .

[34]  Claudio Canuto,et al.  BDDC preconditioners for continuous and discontinuous Galerkin methods using spectral/hp elements with variable local polynomial degree , 2014 .

[35]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[36]  L. Beirao da Veiga,et al.  Serendipity Nodal VEM spaces , 2015, 1510.08477.

[37]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[38]  Hyea Hyun Kim A BDDC Algorithm for Mortar Discretization of Elasticity Problems , 2008, SIAM J. Numer. Anal..

[39]  Barry F. Smith A domain decomposition algorithm for elliptic problems in three dimensions , 1990 .

[40]  L. Beirao da Veiga,et al.  A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.

[41]  Silvia Bertoluzza,et al.  Substructuring preconditioners for the three fields domain decomposition method , 2003, Math. Comput..

[42]  C. Farhat International Journal for Numerical Methods in Engineering , 2019 .

[43]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[44]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[45]  Raducanu Razvan,et al.  MATHEMATICAL MODELS and METHODS in APPLIED SCIENCES , 2012 .

[46]  Ilaria Perugia,et al.  A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.

[47]  Olof B. Widlund,et al.  A BDDC Method for Mortar Discretizations Using a Transformation of Basis , 2008, SIAM J. Numer. Anal..

[48]  Juan Galvis,et al.  BDDC methods for discontinuous Galerkin discretization of elliptic problems , 2007, J. Complex..

[49]  Hyea Hyun Kim,et al.  A FETI-DP FORMULATION OF THREE DIMENSIONAL ELASTICITY PROBLEMS WITH MORTAR DISCRETIZATION , 2005 .

[50]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[51]  Lorenzo Mascotto A therapy for the ill-conditioning in the Virtual Element Method , 2017 .

[52]  Lorenzo Mascotto,et al.  Exponential convergence of the hp Virtual Element Method with corner singularities , 2016, 1611.10165.

[53]  Lourenço Beirão da Veiga,et al.  A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..

[54]  P. F. Antonietti,et al.  A multigrid algorithm for the $p$-version of the Virtual Element Method , 2017, 1703.02285.

[55]  Lourenço Beirão da Veiga,et al.  Virtual element methods for parabolic problems on polygonal meshes , 2015 .

[56]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[57]  Gerhard Wellein,et al.  Hybrid MPI/OpenMP Parallelization in FETI-DP Methods , 2015 .

[58]  Luca F. Pavarino,et al.  BDDC and FETI-DP preconditioners for spectral element discretizations , 2007 .

[59]  CLARK R. DOHRMANN,et al.  A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..