Inverse zero-sum problems II

Let $G$ be an additive finite abelian group. A sequence over $G$ is called a minimal zero-sum sequence if the sum of its terms is zero and no proper subsequence has this property. Davenport's constant of $G$ is the maximum of the lengths of the minimal zero-sum sequences over $G$. Its value is well-known for groups of rank two. We investigate the structure of minimal zero-sum sequences of maximal length for groups of rank two. Assuming a well-supported conjecture on this problem for groups of the form $C_m \oplus C_m$, we determine the structure of these sequences for groups of rank two. Combining our result and partial results on this conjecture, yields unconditional results for certain groups of rank two.

[1]  Christian Reiher,et al.  On Kemnitz’ conjecture concerning lattice-points in the plane , 2007 .

[2]  Jan-Christoph Schlage-Puchta,et al.  Davenport's constant for groups of the form Z₃ ⊕ Z₃ ⊕ Z₃ , 2007 .

[3]  Weidong Gao,et al.  Inverse Zero-Sum Problems III , 2008 .

[4]  Weidong Gao On Davenport's constant of finite abelian groups with rank three , 2000, Discret. Math..

[5]  David J. Grynkiewicz,et al.  On some developments of the Erdős–Ginzburg–Ziv Theorem II , 2003 .

[6]  Weidong Gao,et al.  On the structure of sequences with forbidden zero-sum subsequences , 2003 .

[7]  Svetoslav Savchev,et al.  Kemnitz' conjecture revisited , 2005, Discret. Math..

[8]  R. Thangadurai,et al.  Gao’s conjecture on zerosum sequences , 2002 .

[9]  Weidong Gao,et al.  On the order of elements in long minimal zero-sum sequences , 2002, Period. Math. Hung..

[10]  Noga Alon,et al.  A lattice point problem and additive number theory , 1995, Comb..

[11]  Immanuel Halupczok,et al.  Inductive Methods and Zero-Sum Free Sequences , 2007 .

[13]  Yves Edel,et al.  Zero-sum problems in finite abelian groups and affine caps , 2006 .

[14]  P. A. García-Sánchez,et al.  Non-Unique Factorizations , 2010 .

[15]  Weidong Gao,et al.  Zero-sum problems in finite abelian groups: A survey , 2006 .

[16]  Weidong Gao,et al.  ON ZERO-SUM SEQUENCES IN Z/nZ⊕ Z/nZ , 2003 .

[17]  John E. Olson,et al.  A combinatorial problem on finite Abelian groups, I , 1969 .

[18]  Weidong Gao,et al.  On Long Minimal Zero Sequences in Finite Abelian Groups , 1999 .

[19]  Wolfgang A. Schmid,et al.  Minimal zero-sum sequences in Cn+Cn , 2007, Eur. J. Comb..

[20]  Immanuel Halupczok,et al.  The structure of maximal zero-sum free sequences , 2010 .

[21]  J. Schlage-Puchta,et al.  Davenport ’ s Constant for Groups of the Form Z 3 ⊕ Z 3 ⊕ Z , 2007 .

[22]  Fang Chen,et al.  Long zero-free sequences in finite cyclic groups , 2007, Discret. Math..

[23]  Weidong Gao,et al.  Inverse zero-sum problems , 2007 .

[24]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[25]  Alfred Geroldinger,et al.  Non-Unique Factorizations : Algebraic, Combinatorial and Analytic Theory , 2006 .

[26]  Paul Erdös,et al.  Conditions for a Zero Sum Modulo n , 1975, Canadian Mathematical Bulletin.

[27]  van P. Emde Boas,et al.  A combinatorial problem on finite abelian groups, 3 , 1967 .

[28]  Weidong Gao,et al.  A Combinatorial Problem on Finite Abelian Groups , 1996 .

[29]  Pingzhi Yuan On the index of minimal zero-sum sequences over finite cyclic groups , 2007, J. Comb. Theory, Ser. A.

[30]  Benjamin Girard,et al.  Inverse zero-sum problems and algebraic invariants , 2008, 0806.3676.

[31]  Arie Bialostocki,et al.  On the Erdös-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings , 1992, Discret. Math..

[32]  A. Ziv,et al.  Theorem in the Additive Number Theory , 2022 .

[33]  Alfred Geroldinger,et al.  Combinatorial Number Theory and Additive Group Theory , 2009 .

[34]  Qing-Hu Hou,et al.  On short zero-sum subsequences. II. , 2007 .

[35]  Weidong Gao Two Zero-Sum Problems and Multiple Properties☆ , 2000 .