Surface Mesh to Volumetric Spline Conversion with Generalized Polycubes

This paper develops a novel volumetric parameterization and spline construction framework, which is an effective modeling tool for converting surface meshes to volumetric splines. Our new splines are defined upon a novel parametric domain called generalized polycubes (GPCs). A GPC comprises a set of regular cube domains topologically glued together. Compared with conventional polycubes (CPCs), the GPC is much more powerful and flexible and has improved numerical accuracy and computational efficiency when serving as a parametric domain. We design an automatic algorithm to construct the GPC domain while also permitting the user to improve shape abstraction via interactive intervention. We then parameterize the input model on the GPC domain. Finally, we devise a new volumetric spline scheme based on this seamless volumetric parameterization. With a hierarchical fitting scheme, the proposed splines can fit data accurately using reduced number of superfluous control points. Our volumetric modeling scheme has great potential in shape modeling, engineering analysis, and reverse engineering applications.

[1]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[2]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[3]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[4]  Tom Lyche,et al.  T-spline simplification and local refinement , 2004, ACM Trans. Graph..

[5]  Paolo Cignoni,et al.  PolyCube-Maps , 2004, SIGGRAPH 2004.

[6]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[7]  Hong Qin,et al.  Multiresolution heterogeneous solid modeling and visualization using trivariate simplex splines , 2004, SM '04.

[8]  Christian Rössl,et al.  Reconstruction of volume data with quadratic super splines , 2004, IEEE Transactions on Visualization and Computer Graphics.

[9]  Xunnian Yang,et al.  Free-form deformation with weighted T-spline , 2005, The Visual Computer.

[10]  Paul M. Thompson,et al.  Volumetric harmonic brain mapping , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[11]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[12]  Kun Zhou,et al.  Large mesh deformation using the volumetric graph Laplacian , 2005, ACM Trans. Graph..

[13]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[14]  Tao Ju,et al.  Mean value coordinates for closed triangular meshes , 2005, ACM Trans. Graph..

[15]  Jia Lu,et al.  NURBS-based Galerkin method and application to skeletal muscle modeling , 2005, SPM '05.

[16]  Yimin Wang,et al.  Adaptive T-spline surface fitting to z-map models , 2005, GRAPHITE '05.

[17]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[18]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[19]  Gauthier Lafruit,et al.  Adaptive 3D Content for Multi-Platform On-Line Games , 2007, CW 2007.

[20]  Daniel Cohen-Or,et al.  Consistent mesh partitioning and skeletonisation using the shape diameter function , 2008, The Visual Computer.

[21]  Tamal K. Dey,et al.  On Computing Handle and Tunnel Loops , 2007, 2007 International Conference on Cyberworlds (CW'07).

[22]  Alexandru Telea,et al.  Skeleton-based Hierarchical Shape Segmentation , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[23]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[24]  Alla Sheffer,et al.  Mesh parameterization: theory and practice Video files associated with this course are available from the citation page , 2007, SIGGRAPH Courses.

[25]  Hong Qin,et al.  Harmonic volumetric mapping for solid modeling applications , 2007, Symposium on Solid and Physical Modeling.

[26]  Hong Qin,et al.  Polycube splines , 2007, Comput. Aided Des..

[27]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[28]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[29]  Elaine Cohen,et al.  Volumetric parameterization and trivariate b-spline fitting using harmonic functions , 2008, SPM '08.

[30]  Charlie C. L. Wang,et al.  Automatic PolyCube-Maps , 2008, GMP.

[31]  Hong Qin,et al.  User-controllable polycube map for manifold spline construction , 2008, SPM '08.

[32]  Ariel Shamir,et al.  A survey on Mesh Segmentation Techniques , 2008, Comput. Graph. Forum.

[33]  Chi-Wing Fu,et al.  A divide-and-conquer approach for automatic polycube map construction , 2009, Comput. Graph..

[34]  Daniel Cohen-Or,et al.  A Part‐aware Surface Metric for Shape Analysis , 2009, Comput. Graph. Forum.

[35]  Hong Qin,et al.  Surface Mapping Using Consistent Pants Decomposition , 2009, IEEE Transactions on Visualization and Computer Graphics.

[36]  Jason F. Shepherd,et al.  A constructive approach to constrained hexahedral mesh generation , 2009, Engineering with Computers.

[37]  Ying He,et al.  Hexahedral shell mesh construction via volumetric polycube map , 2010, SPM '10.

[38]  Ying He,et al.  Direct-Product Volumetric Parameterization of Handlebodies via Harmonic Fields , 2010, 2010 Shape Modeling International Conference.

[39]  Elaine Cohen,et al.  Volumetric parameterization of complex objects by respecting multiple materials , 2010, Comput. Graph..

[40]  Konrad Polthier,et al.  CUBECOVER – Parameterization of 3D Volumes , 2011 .

[41]  Shi-Qing Xin,et al.  Editable polycube map for GPU-based subdivision surfaces , 2011, SI3D.

[42]  Eugene Zhang,et al.  All‐Hex Mesh Generation via Volumetric PolyCube Deformation , 2011, Comput. Graph. Forum.

[43]  Hong Qin,et al.  Component-aware tensor-product trivariate splines of arbitrary topology , 2012, Comput. Graph..

[44]  Hong Qin,et al.  Restricted Trivariate Polycube Splines for Volumetric Data Modeling , 2012, IEEE Transactions on Visualization and Computer Graphics.