Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests

Synthetic Aperture Radar (SAR) backscatter measurements are sensitive to forest aboveground biomass (AGB), and the observations from space can be used for mapping AGB globally. However, the radar sensitivity saturates at higher AGB values depending on the wavelength and geometry of radar measurements, and is influenced by the structure of the forest and environmental conditions. Here, we examine the sensitivity of SAR at the L-band frequency (~25 cm wavelength) to AGB in order to examine the performance of future joint National Aeronautics and Space Administration, Indian Space Research Organisation NASA-ISRO SAR mission in mapping the AGB of global forests. For SAR data, we use the Phased Array L-Band SAR (PALSAR) backscatter from the Advanced Land Observing Satellite (ALOS) aggregated at a 100-m spatial resolution; and for AGB data, we use more than three million AGB values derived from the Geoscience Laser Altimeter System (GLAS) LiDAR height metrics at about 0.16–0.25 ha footprints across eleven different forest types globally. The results from statistical analysis show that, over all eleven forest types, saturation level of L-band radar at HV polarization on average remains ≥100 Mg·ha−1. Fresh water swamp forests have the lowest saturation with AGB at ~80 Mg·ha−1, while needleleaf forests have the highest saturation at ~250 Mg·ha−1. Swamp forests show a strong backscatter from the vegetation-surface specular reflection due to inundation that requires to be treated separately from those on terra firme. Our results demonstrate that L-Band backscatter relations to AGB can be significantly different depending on forest types and environmental effects, requiring multiple algorithms to map AGB from time series of satellite radar observations globally.

[1]  Sassan Saatchi,et al.  Mapping tropical forest biomass with radar and spaceborne LiDAR: overcoming problems of high biomass and persistent cloud , 2011 .

[2]  W. Salas,et al.  Baseline Map of Carbon Emissions from Deforestation in Tropical Regions , 2012, Science.

[3]  J. V. Soares,et al.  Distribution of aboveground live biomass in the Amazon basin , 2007 .

[4]  Masanobu Shimada,et al.  Generating Large-Scale High-Quality SAR Mosaic Datasets: Application to PALSAR Data for Global Monitoring , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[5]  Dirk H. Hoekman,et al.  Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon , 2000, IEEE Trans. Geosci. Remote. Sens..

[6]  Ziad S. Haddad,et al.  An Error Model for Biomass Estimates Derived From Polarimetric Radar Backscatter , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Adrian K. Fung,et al.  A microwave scattering model for layered vegetation , 1992, IEEE Trans. Geosci. Remote. Sens..

[8]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[9]  Sassan Saatchi,et al.  Coherent effects in microwave backscattering models for forest canopies , 1997, IEEE Trans. Geosci. Remote. Sens..

[10]  Yifan Yu Global Distribution of Carbon Stock in Live Woody Vegetation , 2013 .

[11]  I. Woodhouse,et al.  Using satellite radar backscatter to predict above‐ground woody biomass: A consistent relationship across four different African landscapes , 2009 .

[12]  K. Jon Ranson,et al.  Radar modeling of a boreal forest , 1991, IEEE Trans. Geosci. Remote. Sens..

[13]  M. Lefsky A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System , 2010 .

[14]  Maurizio Santoro,et al.  Multitemporal repeat pass SAR interferometry of boreal forests , 2003, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Maxim Neumann,et al.  Impacts of Spatial Variability on Aboveground Biomass Estimation from L-Band Radar in a Temperate Forest , 2013, Remote. Sens..

[16]  Thuy Le Toan,et al.  Decrease of L-band SAR backscatter with biomass of dense forests , 2015 .

[17]  H. Balzter Forest mapping and monitoring with interferometric synthetic aperture radar (InSAR) , 2001 .

[18]  Sandra A. Brown,et al.  Monitoring and estimating tropical forest carbon stocks: making REDD a reality , 2007 .

[19]  M. Keller,et al.  Seeing the forest beyond the trees , 2015 .

[20]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[21]  Yang Du,et al.  Sensitivity to soil moisture by active and passive microwave sensors , 2000, IEEE Trans. Geosci. Remote. Sens..

[22]  C. Schmullius,et al.  Carbon stock and density of northern boreal and temperate forests , 2014 .

[23]  David B. Lindenmayer,et al.  Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests , 2009, Proceedings of the National Academy of Sciences.

[24]  Guoqing Sun,et al.  Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR , 2013 .

[25]  S. Goetz,et al.  Importance of biomass in the global carbon cycle , 2009 .

[26]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[27]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[28]  Maurizio Santoro,et al.  Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band , 2012 .

[29]  D. Schimel,et al.  Effect of increasing CO2 on the terrestrial carbon cycle , 2014, Proceedings of the National Academy of Sciences.

[30]  Atul K. Jain,et al.  Global Carbon Budget 2015 , 2015 .

[31]  João Roberto dos Santos,et al.  Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest , 2003 .

[32]  S. Popescu,et al.  Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level , 2011 .

[33]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[34]  Masanobu Shimada,et al.  An Evaluation of the ALOS PALSAR L-Band Backscatter—Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[35]  G. Powell,et al.  Terrestrial Ecoregions of the World: A New Map of Life on Earth , 2001 .

[36]  F. Rocca,et al.  The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle , 2011 .

[37]  Irena Hajnsek,et al.  Tropical-Forest-Parameter Estimation by Means of Pol-InSAR: The INDREX-II Campaign , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Michael A. Lefsky,et al.  Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms , 2007 .

[39]  S. Frolking,et al.  Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure , 2009 .

[40]  Natascha Kljun,et al.  Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data , 2012 .

[41]  S. Saatchi,et al.  Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass , 2011 .

[42]  Maxim Neumann,et al.  Assessing Performance of L- and P-Band Polarimetric Interferometric SAR Data in Estimating Boreal Forest Above-Ground Biomass , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Martti Hallikainen,et al.  Multitemporal behavior of L- and C-band SAR observations of boreal forests , 1999, IEEE Trans. Geosci. Remote. Sens..

[44]  L. Heath,et al.  Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010 , 2011 .

[45]  Lars M. H. Ulander,et al.  L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest , 2011 .

[46]  Shane Cloude Dual-Baseline Coherence Tomography , 2007, IEEE Geoscience and Remote Sensing Letters.

[47]  Mahta Moghaddam,et al.  Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery , 2000, IEEE Trans. Geosci. Remote. Sens..

[48]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[49]  Frédéric Achard,et al.  GLOBCOVER : The most detailed portrait of Earth , 2008 .