Online generation of scene descriptions in urban environments

The ability to extract a rich set of semantic workspace labels from sensor data gathered in complex environments is a fundamental prerequisite to any form of semantic reasoning in mobile robotics. In this paper, we present an online system for the augmentation of maps of outdoor urban environments with such higher-order, semantic labels. The system employs a shallow supervised classification hierarchy to classify scene attributes, consisting of a mixture of 2D/3D geometric and visual scene information, into a range of different workspace classes. The union of classifier responses yields a rich, composite description of the local workspace. We present extensive experimental results, using two large urban data sets collected by our research platform.

[1]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[2]  Alexander Kleiner,et al.  Behavior maps for online planning of obstacle negotiation and climbing on rough terrain , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[4]  Christopher J. C. Burges,et al.  Simplified Support Vector Decision Rules , 1996, ICML.

[6]  Paul Newman,et al.  High quality 3D laser ranging under general vehicle motion , 2008, 2008 IEEE International Conference on Robotics and Automation.

[7]  P. Peixoto,et al.  Tracking and Classification of Dynamic Obstacles Using Laser Range Finder and Vision , 2006 .

[8]  Roberto Manduchi,et al.  Fast and reliable obstacle detection and segmentation for cross-country navigation , 2002, Intelligent Vehicle Symposium, 2002. IEEE.

[9]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[11]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[12]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[13]  Alexei A. Efros,et al.  Putting Objects in Perspective , 2006, CVPR.

[14]  Alexander J. Smola,et al.  Advances in Large Margin Classifiers , 2000 .

[15]  Sebastian Thrun Winning the DARPA grand challenge , 2006 .

[16]  David G. Stork,et al.  Pattern Classification , 1973 .

[17]  Paul Newman,et al.  Probabilistic Appearance Based Navigation and Loop Closing , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[18]  Alexei A. Efros,et al.  Putting Objects in Perspective , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[19]  Michael Beetz,et al.  Acquiring models of rectangular 3D objects for robot maps , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[20]  Cordelia Schmid,et al.  Toward Category-Level Object Recognition , 2006, Toward Category-Level Object Recognition.

[21]  Paul Newman,et al.  Outdoor SLAM using visual appearance and laser ranging , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[22]  Yann LeCun,et al.  Online Learning for Offroad Robots: Spatial Label Propagation to Learn Long-Range Traversability , 2007, Robotics: Science and Systems.

[23]  Wolfram Burgard,et al.  Supervised Learning of Places from Range Data using AdaBoost , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[24]  Joachim Hertzberg,et al.  Automatic Reconstruction of Colored 3D Models , 2004 .

[25]  Ben J. A. Kröse,et al.  Appearance-based concurrent map building and localization , 2006, Robotics Auton. Syst..

[26]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[27]  Arthur R. Pope Model-Based Object Recognition - A Survey of Recent Research , 1994 .

[28]  Benjamin Kuipers,et al.  Bootstrap learning for place recognition , 2002, AAAI/IAAI.

[29]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[30]  Dieter Fox,et al.  A Spatio-Temporal Probabilistic Model for Multi-Sensor Multi-Class Object Recognition , 2007, ISRR.

[31]  Alessandro Saffiotti,et al.  A virtual sensor for room detection , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Joachim Hertzberg,et al.  3D Mapping with Semantic Knowledge , 2005, RoboCup.

[33]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[34]  Aaron C. Courville,et al.  Interacting Markov Random Fields for Simultaneous Terrain Modeling and Obstacle Detection , 2005, Robotics: Science and Systems.

[35]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[36]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[37]  Sebastian Thrun,et al.  Detecting and modeling doors with mobile robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[38]  Jana Kosecka,et al.  Qualitative image based localization in indoors environments , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[39]  Sebastian Thrun,et al.  Stanley: The robot that won the DARPA Grand Challenge , 2006, J. Field Robotics.

[40]  Thorsten Joachims,et al.  Making large-scale support vector machine learning practical , 1999 .

[41]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[42]  Dieter Fox,et al.  Relational Object Maps for Mobile Robots , 2005, IJCAI.

[43]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[44]  Roland Siegwart,et al.  A Fast and Robust 3D Feature Extraction Algorithm for Structured Environment Reconstruction , 2003 .

[45]  J.-S. Gutmann,et al.  RG mapping: learning compact and structured 2D line maps of indoor environments , 2002, Proceedings. 11th IEEE International Workshop on Robot and Human Interactive Communication.

[46]  Judith A. Gilbride,et al.  From the Editorʼs , 2008 .

[47]  Ben Taskar,et al.  Discriminative learning of Markov random fields for segmentation of 3D scan data , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[48]  Paul Newman,et al.  Describing Composite Urban Workspaces , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[49]  Michael Happold,et al.  Enhancing Supervised Terrain Classification with Predictive Unsupervised Learning , 2006, Robotics: Science and Systems.

[50]  Paul Newman,et al.  Using Scene Similarity for Place Labelling , 2006, ISER.

[51]  Bernardo Wagner,et al.  Colored 2D maps for robot navigation with 3D sensor data , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).