Fabrication and mechanical testing of glass fiber entangled sandwich beams: A comparison with honeycomb and foam sandwich beams

The aim of this paper is the fabrication and mechanical testing of entangled sandwich beam specimens and the comparison of their results with standard sandwich specimens with honeycomb and foam as core materials. The entangled sandwich specimens have glass fiber cores and glass woven fabric as skin materials. The tested glass fiber entangled sandwich beams possess low compressive and shear modulus as compared to honeycomb and foam sandwich beams of the same specifications. Although the entangled sandwich beams are heavier than the honeycomb and foam sandwich beams, the vibration tests show that the entangled sandwich beams possess higher damping ratios and low vibratory levels as compared to honeycomb and foam sandwich beams, making them suitable for vibro-acoustic applications where structural strength is of secondary importance, e.g., internal paneling of a helicopter.

[1]  S. Jeelani,et al.  Dynamic compression behavior of integrated core sandwich composites , 2007 .

[2]  A. C. Nilsson,et al.  PREDICTION AND MEASUREMENT OF SOME DYNAMIC PROPERTIES OF SANDWICH STRUCTURES WITH HONEYCOMB AND FOAM CORES , 2002 .

[3]  Amjad J. Aref,et al.  A combined honeycomb and solid viscoelastic material for structural damping applications , 2003 .

[4]  Mohan D. Rao,et al.  Vibration and Damping Analysis of a Sandwich Beam Containing a Viscoelastic Constraining Layer , 2005 .

[5]  D. Zenkert,et al.  Handbook of Sandwich Construction , 1997 .

[6]  B. Jang,et al.  A study on material damping of 0° laminated composite sandwich cantilever beams with a viscoelastic layer , 2003 .

[7]  D. J. Mead A comparison of some equations for the flexural vibration of damped sandwich beams , 1982 .

[8]  K. Renji,et al.  EXPERIMENTAL MODAL DENSITIES OF HONEYCOMB SANDWICH PANELS AT HIGH FREQUENCIES , 2000 .

[9]  Dongmei Wang,et al.  Impact behavior and energy absorption of paper honeycomb sandwich panels , 2009 .

[10]  Chyanbin Hwu,et al.  Free vibration of delaminated composite sandwich beams , 1995 .

[11]  Yeoshua Frostig,et al.  Bending of sandwich beams with transversely flexible core , 1990 .

[12]  T. W. Clyne,et al.  Mechanics of thin ultra-light stainless steel sandwich sheet material Part I. Stiffness , 2003 .

[13]  Seung-Hwan Chang,et al.  An experimental study on energy absorbing structures made of fabric composites , 2008 .

[14]  Ronald F. Gibson,et al.  Modal vibration response measurements for characterization of composite materials and structures , 2000 .

[15]  Johann Guilleminot,et al.  Multiscale modelling of the composite reinforced foam core of a 3D sandwich structure , 2008 .

[16]  K. Renji,et al.  Loss Factors of Composite Honeycomb Sandwich Panels , 2002 .

[17]  M. Yan,et al.  Governing Equations for Vibrating Constrained-Layer Damping Sandwich Plates and Beams , 1972 .

[18]  H. G. Allen Analysis and design of structural sandwich panels , 1969 .

[19]  Jia-Yi Yeh,et al.  Vibration of a sandwich plate with a constrained layer and electrorheological fluid core , 2004 .

[20]  D. J. Mead,et al.  Loss factors and resonant frequencies of encastré damped sandwich beams , 1970 .

[21]  D. J. Ewins,et al.  Modal Testing: Theory and Practice , 1984 .

[22]  Massimo Garai,et al.  A simple empirical model of polyester fibre materials for acoustical applications , 2005 .

[23]  Norman A. Fleck,et al.  Material selection in sandwich beam construction , 2004 .

[24]  Xiaodong He,et al.  Experimental and theoretical studies on high-temperature thermal properties of fibrous insulation , 2008 .

[25]  K. Lingaiah,et al.  Strength and stiffness of sandwich beams in bending , 1991 .

[26]  Eric Andrieu,et al.  Experimental data about mechanical behaviour during compression tests for various matted fibres , 2005 .

[27]  Bin Wang,et al.  Damping of honeycomb sandwich beams , 2000 .

[28]  C. Bouvet,et al.  Mechanical behavior of entangled fibers and entangled cross-linked fibers during compression , 2009 .

[29]  Daowu Zhou,et al.  Mechanical properties of fibrous core sandwich panels , 2005 .

[30]  B. Castanié,et al.  Experimental Analysis and Modeling of the Crushing of Honeycomb Cores , 2005 .

[31]  M. Baudequin Identification des mécanismes physiques mis en jeu lors de la reprise d'épaisseur de la laine de verre , 2002 .

[32]  M. Rao,et al.  Dynamic Analysis and Design of Laminated Composite Beams with Multiple Damping Layers , 1993 .

[33]  Kshitij Gupta,et al.  Damping studies in fiber-reinforced composites : a review , 1999 .

[34]  T. Clyne,et al.  Optimisation of Metallic Fibre Network Materials for Compact Heat Exchangers , 2008 .

[35]  J. Vinson The Behavior of Sandwich Structures of Isotropic and Composite Materials , 1999 .

[36]  Malcolm J. Crocker,et al.  Effects of thickness and delamination on the damping in honeycomb-foam sandwich beams , 2006 .

[37]  Nonlinear dynamic behaviour of a preloaded thin sandwich plate incorporating visco-hyperelastic layers , 2009 .

[38]  Matthieu Faessel,et al.  3D Modelling of random cellulosic fibrous networks based on X-ray tomography and image analysis , 2005 .

[39]  Leif A. Carlsson,et al.  Characterization of Face Sheet/Core Shear Fracture of Composite Sandwich Beams , 1991 .

[40]  Raymond Panneton,et al.  New approach for the measurement of damping properties of materials using the Oberst beam , 2004 .

[41]  Amjad J. Aref,et al.  Advanced Composite Panels for Seismic and Vibration Mitigation of Existing Structures , 2006 .

[42]  Mohan D. Rao,et al.  Vibration and Damping Analysis of Multi-Span Sandwich Beams with Arbitrary Boundary Conditions , 1993 .

[43]  N. Ganesan,et al.  Vibration and damping of composite sandwich box column with viscoelastic/electrorheological fluid core and performance comparison , 2009 .

[44]  Chyanbin Hwu,et al.  Vibration suppression of composite sandwich beams , 2004 .