A dynamic data structure for flexible molecular maintenance and informatics

We present the "Dynamic Packing Grid" (DPG) data structure along with details of our implementation and performance results, for maintaining and manipulating flexible molecular models and assemblies. DPG can efficiently maintain the molecular surface (e.g., van der Waals surface and the solvent contact surface) under insertion/deletion/movement (i.e., updates) of atoms or groups of atoms. DPG also permits the fast estimation of important molecular properties (e.g., surface area, volume, polarization energy, etc.) that are needed for computing binding affinities in drug design or in molecular dynamics calculations. DPG can additionally be utilized in efficiently maintaining multiple "rigid" domains of dynamic flexible molecules. In DPG, each up-date takes only O (log w) time w.h.p. on a RAM with w-bit words i.e., O (1) time in practice, and hence is extremely fast. DPG's queries include the reporting of all atoms within O (rmax) distance from any given atom center or point in 3-space in O (log log w) (= O (1)) time w.h.p., where rmax is the radius of the largest atom in the molecule. It can also answer whether a given atom is exposed or buried under the surface within the same time bound, and can return the entire molecular surface in O (m) worst-case time, where m is the number of atoms on the surface. The data structure uses space linear in the number of atoms in the molecule.

[1]  Dan E. Willard Log-Logarithmic Worst-Case Range Queries are Possible in Space Theta(N) , 1983, Inf. Process. Lett..

[2]  Herbert Edelsbrunner,et al.  Triangulating the Surface of a Molecule , 1996, Discret. Appl. Math..

[3]  Paul G. Mezey,et al.  Shape in Chemistry: An Introduction to Molecular Shape and Topology , 1993 .

[4]  R Nussinov,et al.  Flexible docking allowing induced fit in proteins: Insights from an open to closed conformational isomers , 1998, Proteins.

[5]  Klaus Schulten,et al.  A system for interactive molecular dynamics simulation , 2001, I3D '01.

[6]  Chandrajit L. Bajaj,et al.  Fast Molecular Solvation Energetics and Forces Computation , 2010, SIAM J. Sci. Comput..

[7]  Ian C. Parmee,et al.  Techniques for the design of molecules and combinatorial chemical libraries , 2007, 2007 IEEE Congress on Evolutionary Computation.

[8]  Valerio Pascucci,et al.  NURBS based B-rep models for macromolecules and their properties , 1997, SMA '97.

[9]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[10]  Dan E. Willard,et al.  Log-logarithmic worst-case range queries are possible in space ⊕(N) , 1983 .

[11]  Leonidas J. Guibas,et al.  Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..

[12]  Guoliang Xu,et al.  A Fast Variational Method for the Construction of Resolution Adaptive C-Smooth Molecular Surfaces. , 2009, Computer methods in applied mechanics and engineering.

[13]  Chandrajit L. Bajaj,et al.  TexMol: interactive visual exploration of large flexible multi-component molecular complexes , 2004, IEEE Visualization 2004.

[14]  Chandrajit L. Bajaj,et al.  Quality meshing of implicit solvation models of biomolecular structures , 2006, Comput. Aided Geom. Des..

[15]  Y. Modis,et al.  A ligand-binding pocket in the dengue virus envelope glycoprotein , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[17]  Thomas Bäck,et al.  The Molecule Evoluator. An Interactive Evolutionary Algorithm for the Design of Drug-Like Molecules , 2006, J. Chem. Inf. Model..

[18]  Rasmus Pagh,et al.  Cuckoo Hashing , 2001, Encyclopedia of Algorithms.

[19]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[20]  F M Richards,et al.  Areas, volumes, packing and protein structure. , 1977, Annual review of biophysics and bioengineering.

[21]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[22]  Chandrajit L. Bajaj,et al.  An algebraic spline model of molecular surfaces , 2007, Symposium on Solid and Physical Modeling.

[23]  A Anderson,et al.  VRDD: applying virtual reality visualization to protein docking and design. , 1999, Journal of molecular graphics & modelling.

[24]  M. Sternberg,et al.  Rapid refinement of protein interfaces incorporating solvation: application to the docking problem. , 1998, Journal of molecular biology.

[25]  Jörg Weiser,et al.  Fast, approximate algorithm for detection of solvent-inaccessible atoms , 1999, J. Comput. Chem..

[26]  Bernd Hamann,et al.  ProteinShop: A tool for interactive protein manipulation and steering , 2004, J. Comput. Aided Mol. Des..

[27]  Thomas Bäck,et al.  Evolutionary algorithms for automated drug design towards target molecule properties , 2008, GECCO '08.

[28]  Klaus Schulten,et al.  Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins. , 2005, Biophysical journal.

[29]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1994, ACM Trans. Graph..

[30]  J. A. Grant,et al.  A Gaussian Description of Molecular Shape , 1995 .

[31]  A. Olson,et al.  Approximation and characterization of molecular surfaces , 1993, Biopolymers.

[32]  Harianto Tjong,et al.  GBr(6): a parameterization-free, accurate, analytical generalized born method. , 2007, The journal of physical chemistry. B.

[33]  Z. Weng,et al.  Protein–protein docking benchmark 2.0: An update , 2005, Proteins.

[34]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[35]  Klaus Schulten,et al.  Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum. , 2006, Biophysical journal.

[36]  Rezaul Alam Chowdhury,et al.  F2Dock: Fast Fourier Protein-Protein Docking , 2011, IEEE ACM Trans. Comput. Biol. Bioinform..

[37]  M. Gilson,et al.  Calculation of protein-ligand binding affinities. , 2007, Annual review of biophysics and biomolecular structure.

[38]  Frederick P. Brooks,et al.  Computing smooth molecular surfaces , 1994, IEEE Computer Graphics and Applications.

[39]  Kenneth L. Clarkson,et al.  Combinatorial complexity bounds for arrangements of curves and surfaces , 2015, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[40]  C. Bajaj,et al.  F2Dock: fast Fourier protein-protein docking. , 2011, IEEE/ACM transactions on computational biology and bioinformatics.

[41]  M. Sanner,et al.  Reduced surface: an efficient way to compute molecular surfaces. , 1996, Biopolymers.

[42]  Jean-Claude Spehner,et al.  Fast and robust computation of molecular surfaces , 1995, SCG '95.

[43]  S. Batsanov,et al.  Van der Waals Radii of Elements , 2001 .

[44]  E. Lindahl,et al.  Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. , 2000, Biophysical journal.

[45]  Michael L. Fredman,et al.  Surpassing the Information Theoretic Bound with Fusion Trees , 1993, J. Comput. Syst. Sci..

[46]  Laxmikant V. Kalé,et al.  NAMD: a Parallel, Object-Oriented Molecular Dynamics Program , 1996, Int. J. High Perform. Comput. Appl..

[47]  Valerio Pascucci,et al.  Dynamic maintenance and visualization of molecular surfaces , 2003, Discret. Appl. Math..

[48]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[49]  Chandrajit Bajaj,et al.  A Laguerre Voronoi based scheme for meshing particle systems , 2005, Japan journal of industrial and applied mathematics.

[50]  Silvia N. Crivelli,et al.  DockingShop: a tool for interactive protein docking , 2005, 2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05).

[51]  W. C. Still,et al.  The GB/SA Continuum Model for Solvation. A Fast Analytical Method for the Calculation of Approximate Born Radii , 1997 .

[52]  Tony You,et al.  An analytical algorithm for the rapid determination of the solvent accessibility of points in a three‐dimensional lattice around a solute molecule , 1995, J. Comput. Chem..

[53]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[54]  G. Vriend,et al.  A very fast program for visualizing protein surfaces, channels and cavities. , 1989, Journal of molecular graphics.

[55]  Dan Halperin,et al.  Dynamic maintenance of molecular surfaces under conformational changes , 2005, SCG.

[56]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[57]  Bernd Hamann,et al.  Interactive protein manipulation , 2003, IEEE Visualization, 2003. VIS 2003..

[58]  Frederick P. Brooks,et al.  Fast analytical computation of Richard's smooth molecular surface , 1993, Proceedings Visualization '93.

[59]  Chandrajit L. Bajaj Valerio Pascucci Ariel Shamir,et al.  Multiresolution Molecular Shapes , 1999 .

[60]  Chandrajit L. Bajaj,et al.  A dynamic data structure for flexible molecular maintenance and informatics , 2011, Bioinform..

[61]  Charles L. Brooks,et al.  Assessing energy functions for flexible docking , 1998, J. Comput. Chem..

[62]  Alan E. Mark,et al.  Effect of Undulations on Surface Tension in Simulated Bilayers , 2001 .

[63]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[64]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[65]  Mihai Patrascu,et al.  On dynamic range reporting in one dimension , 2005, STOC '05.

[66]  Armin A. Weiser,et al.  Neighbor‐list reduction: Optimization for computation of molecular van der Waals and solvent‐accessible surface areas , 1998, J. Comput. Chem..

[67]  Dan Halperin,et al.  Improved Maintenance of Molecular Surfaces Using Dynamic Graph Connectivity , 2005, WABI.

[68]  Mark H. Overmars,et al.  Spheres, molecules, and hidden surface removal , 1998, Comput. Geom..