Electrochemistry of Mono‐ through Hexakis‐adducts of C60

The first systematic electrochemical study by cyclic voltammetry (CV) and rotating-disk electrode (RDE) of the changes in redox properties of covalent fullerene derivatives (2–11) as a function of increasing number of addends is reported. Dialkynylmethanofullerenes 2–4 undergo multiple, fullerene-centered reduction steps at slightly more negative potentials than C60 (1; see Table and Fig. 1). The two C-spheres in the dumbbell-shaped dimeric fullerene derivative 4 show independent, identical redox characteristics. This highlights the insulating character of the sp3-C-atoms in methanofullerenes which prevent through-bond communication of substituent effects from the methano bridge to the fullerene sphere. In the series of mono- through hexakis-adducts 5–11, formed by tether-directed remote functionalization, reductions become increasingly difficult and more irreversible with increasing number of addends (see Table and Fig. 2). Whereas, in 0.1M Bu4NPF6/CH2Cl2, the first reduction of mono-adduct 5 occurs reversibly at −1.06 V vs. the ferrocene/ferricinium couple (Fc/Fc+), hexakis-adduct 11 is reduced irreversibly only at − 1.87 V. Hence, with incremental functionalization of the fullerene, the LUMO of the remaining conjugated framework is raised in energy. Reduction potentials are also dependent on the relative spatial disposition of the addends on the surface of the fullerene sphere. Observed UV/VIS spectral changes and changes in the chemical reactivity along the series 5–11 are in accord with the results of electrochemical measurements. Further, with increasing number of addends, the oxidation of derivatives 5–11 becomes more reversible. Whereas oxidations are increasingly facilitated upon going from mono-adduct 5 (+1.22 V) to tris-adduct 7 (+0.90 V), they occur at nearly the same potential (+0.95 to +0.99 V) in the higher adducts 8–11. This indicates that the oxidations occur in these compounds at a common sub-structural element, for which a ‘cubic’ cyclophane is proposed (see Fig. 3). This sub-structure is fully developed in hexakis-adduct 11.

[1]  Dennis H. Evans,et al.  Voltammetric study of the oxidation of metal derivatives of buckminsterfullerence (C60) , 1995 .

[2]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .

[3]  Stephen R. Wilson,et al.  Methanofullerenes and Methanofulleroids Have Different Electrochemical Behavior at Negative Potentials , 1995 .

[4]  B. Kräutler,et al.  A Highly Symmetric Sixfold Cycloaddition Product of Fullerene C60 , 1995 .

[5]  Bernhard Kräutler,et al.  Ein hochsymmetrisches Produkt einer sechsfachen [4 + 2]‐Cycloaddition des C60‐Fullerens , 1995 .

[6]  P. Cahill,et al.  Study of Acid-Base and Redox Equilibria for the C60/C60H2 System in Dimethyl Sulfoxide Solvent , 1994 .

[7]  F. Diederich,et al.  Tether-Directed Remote Functionalization of Buckminsterfullerene: Regiospecific Hexaadduct Formation† , 1994 .

[8]  François Diederich,et al.  Spacer‐kontrollierte Fernfunktionalisierung von Buckminsterfulleren: regiospezifische Bildung eines Hexaadduktes , 1994 .

[9]  A. Hirsch,et al.  Regiochemistry of Multiple Additions to the Fullerene Core: Synthesis of a Th-Symmetric Hexakis adduct of C60 with Bis(ethoxycarbonyl)methylene , 1994 .

[10]  F. Wudl,et al.  METHYL 1,2-DIHYDROFULLERENECARBOXYLATE , 1994 .

[11]  Y. Murata,et al.  Synthesis and Properties of the First Acetylene Derivatives of C60 , 1994 .

[12]  A. Hirsch Chemistry of Fullerenes , 1994 .

[13]  F. Diederich,et al.  61,61‐Bis(trimethylsilylbutadiynyl)‐1,2‐dihydro‐1,2‐methanofullerene[60]: Crystal Structure at 100 K and Electrochemical Conversion to a Conducting Polymer , 1994 .

[14]  M. Prato,et al.  Electrochemically Induced Isomerization of a Fulleroid to a Methanofullerene , 1994 .

[15]  F. Diederich,et al.  61,61-Bis(trimethylsilylbutadiinyl)-1,2-dihydro-1,2-methanofulleren[60]: Kristallstruktur bei 100 K und elektrochemische Umwandlung in ein leitfähiges Polymer† , 1994 .

[16]  M. Popławska,et al.  Preparation and Isolation of Three Isomeric C70 Isoxazolines: Strong Deshielding in the Polar Region of C70 , 1994 .

[17]  F. Diederich,et al.  Fullerene–Acetylene Hybrids: On the Way to Synthetic Molecular Carbon Allotropes , 1994 .

[18]  H. L. Anderson,et al.  Fulleren‐Acetylen‐Hybride: auf dem Weg zu neuen, synthetischen molekularen Kohlenstoffallotropen , 1994 .

[19]  L. Echegoyen,et al.  Kinetic effects in the electrochemistry of fullerene derivatives at very negative potentials , 1994 .

[20]  A. Knorr,et al.  Functionalization of C60 Buckminsterfullerene by [8 + 2] Cycloaddition: Spectroscopic and Electron‐Transfer Properties of a Tetrahydroazulenofullerene , 1994 .

[21]  Y. Rubin,et al.  Synthesis and characterization of diethynylmethanobuckminsterfullerene, a building block for macrocyclic and polymeric carbon allotropes , 1994 .

[22]  J. Daub,et al.  Funktionalisierung von Buckminsterfulleren C60 durch [8 + 2]‐Cycloaddition: spektroskopische und Elektronentransfereigenschaften eines Tetrahydroazulenofullerens , 1994 .

[23]  P. Cahill,et al.  C60H4 : Kinetics and thermodynamics of multiple addition to C60 , 1994 .

[24]  Craig C. Henderson,et al.  C60H4 : KINETIK UND THERMODYNAMIK DER MEHRFACHEN ADDITION AN C60 , 1994 .

[25]  A. Hirsch,et al.  Fullerene Chemistry in Three Dimensions: Isolation of Seven Regioisomeric Bisadducts and Chiral Trisadducts of C60 and Di(ethoxycarbonyl)methylene , 1994 .

[26]  Y. Maruyama,et al.  Redox properties of organofullerenes , 1994 .

[27]  Heinrich R. Karfunkel,et al.  Fullerenchemie in drei Dimensionen: Isolierung von sieben regioisomeren Bisaddukten sowie chiralen Trisaddukten aus C60 und Di(ethoxycarbonyl)methylen , 1994 .

[28]  F. D’Souza,et al.  Electrochemical properties of fullerene dihydrides C60H2 and C70H2 , 1993 .

[29]  T. Guarr,et al.  Electrochemistry of the C60H2 fullerene , 1993 .

[30]  L. Echegoyen,et al.  Electrochemically-Reversible, Single-Electron Oxidation of C60 and C70 , 1993 .

[31]  Carsten Bingel,et al.  Cyclopropanierung von Fullerenen , 1993 .

[32]  M. Prato,et al.  Probing the properties of C60 through fulleroids ABC61 , 1993 .

[33]  J. Heinze,et al.  Voltammetry of fullerenes C60 and C70 in dimethylamine and methylene chloride , 1993 .

[34]  M. Prato,et al.  Addition of azides to fullerene C60: synthesis of azafulleroids , 1993 .

[35]  M. Prato,et al.  [3 + 2] and [4 + 2] Cycloadditions of fullerene C60 , 1993 .

[36]  N. Oyama,et al.  Determination of the heterogeneous electron-transfer rate constants of C60 , 1993 .

[37]  A. Bard,et al.  Reduction and electrochemistry of fullerene C60 in liquid ammonia , 1992 .

[38]  F. Wudl,et al.  A polyester and polyurethane of diphenyl C61: retention of fulleroid properties in a polymer , 1992 .

[39]  E. Johnston,et al.  Synthesis, chemistry, and properties of a monoalkylated buckminsterfullerene derivative, tert-BuC60 anion , 1992 .

[40]  B. Parkinson,et al.  Electrochemical studies on metal derivatives of buckminsterfullerene (C60) , 1992 .

[41]  T. Ebbesen,et al.  Regiochemistry of the bisosmylation of fullerene C60: ortho, meta, and para in three dimensions , 1992 .

[42]  F. Wudl,et al.  Dihydrofulleroid HC: Synthesis and properties of the parent fulleroid , 1992 .

[43]  W. Kutner,et al.  Electroreduction of Buckminsterfullerene, C60, in aprotic solvents. Solvent, supporting electrolyte, and temperature effects , 1992 .

[44]  F. Wudl,et al.  Synthesis of m-phenylene- and p-phenylenebis(phenylfulleroids): two-pearl sections of pearl necklace polymers , 1992 .

[45]  H. Kroto,et al.  Preparation and characterization of C60Br6 and C60Br8 , 1992, Nature.

[46]  D. Chase,et al.  Synthesis and Single-Crystal X-ray Structure of a Highly Symmetrical C60 Derivative, C60Br24 , 1992, Science.

[47]  Luis Echegoyen,et al.  Electrochemical detection of C606- and C706-: Enhanced stability of fullerides in solution , 1992 .

[48]  M. Hill,et al.  An electrochemical and spectroelectrochemical study of an iridium-buckminsterfullerene complex. Evidence for C60-localized reductions , 1992 .

[49]  F. Wudl The chemical properties of buckminsterfullerene (C60) and the birth and infancy of fulleroids , 1992 .

[50]  P. Fagan,et al.  Metal complexes of buckminsterfullerene (C60) , 1992 .

[51]  F. Wudl,et al.  Systematic Inflation of Buckminsterfillerene C60: Synthesis of Diphenyl Fulleroids C61 to C66 , 1991, Science.

[52]  K. Preston,et al.  Radical Reactions of C60 , 1991, Science.

[53]  R. S. Koefod,et al.  Organometallic chemistry with buckminsterfullerene. Preparation and properties of an indenyliridium(I) complex , 1991 .

[54]  P. Fagan,et al.  A multiply-substituted buckminsterfullerene (C60) with an octahedral array of platinum atoms , 1991 .

[55]  H. Thorp,et al.  Electrochemical reduction of fullerenes in the presence of O2 and H2O: Polyoxygen adducts and fragmentation of the C60 framework , 1991 .

[56]  L. Wilson,et al.  Electrochemical detection of fulleronium and highly reduced fulleride (C605-) ions in solution , 1991 .

[57]  L. Chibante,et al.  Spectroelectrochemical study of the C60 and C70 fullerenes and their mono-, di-, tri-, and tetraanions , 1991 .

[58]  Fred Wudl,et al.  Two different fullerenes have the same cyclic voltammetry , 1991 .

[59]  Michael M. Haley,et al.  Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion , 1990 .