The spectrum of optimal strong partially balanced designs with block size five

We shall refer to a strong partially balanced design SPBD(v,b,k;@l,0) whose b is the maximum number of blocks in all SPBD(v,b,k;@l,0), as an optimal strong partially balanced design, briefly OSPBD(v,k,@l). The author in paper (Discrete Math. 279 (2004) 173) investigated the existence of OSPBD(v,5,1) and gave the spectra of OSPBD(v,5,1) for v=0,1,3(mod4). In this article we shall investigate the existence of OSPBD(v,5,1) and give the spectrum of OSPBD(v,5,1) for the remaining case v=2(mod4).

[1]  Gennian Ge,et al.  Some more 5-GDDs and optimal (v), 5, 1)-packings , 2004 .

[2]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[3]  Alan Hartman,et al.  Resolvable group divisible designs with block size 3 , 1989, Discret. Math..

[4]  Richard M. Wilson,et al.  Constructions and Uses of Pairwise Balanced Designs , 1975 .

[5]  Reihaneh Safavi-Naini,et al.  Characterization of Optimal Authentication Codes with Arbitration , 1999, ACISP.

[6]  Frank E. Bennett,et al.  Some results on (v,{5,w*})‐pbds , 1995 .

[7]  Beiliang Du,et al.  On the existence of incomplete transversal designs with block size five , 1994, Discret. Math..

[8]  R. Julian R. Abel,et al.  Existence of Incomplete Transversal Designs with Block Size Five and Any Index λ , 1997, Des. Codes Cryptogr..

[9]  Dingyi Pei Information-theoretic bounds for authentication codes and block designs , 2004, Journal of Cryptology.

[10]  Dingyi Pei A problem of combinatorial designs related to authentication codes , 1998 .

[11]  Hanfried Lenz,et al.  Design theory , 1985 .

[12]  Gennian Ge Resolvable group divisible designs with block size four , 2002, Discret. Math..

[13]  Gennian Ge,et al.  Existence of (v, {5, wstar}, 1)-PBDs , 2004, Discret. Math..

[14]  Beiliang Du,et al.  Existence of optimal strong partially balanced designs with block size five , 2004, Discret. Math..

[15]  Hao Shen On the Existence of Nearly Kirkman Systems , 1992 .

[16]  Frank E. Bennett,et al.  Perfect Mendelsohn designs with block size six , 2000 .

[17]  Charles J. Colbourn,et al.  The existence of uniform 5‐GDDs , 1997 .

[18]  R. Julian R. Abel,et al.  The existence of three idempotent IMOLS , 2003, Discret. Math..