Perfect quantum multiple-unicast network coding protocol

In order to realize long-distance and large-scale quantum communication, it is natural to utilize quantum repeater. For a general quantum multiple-unicast network, it is still puzzling how to complete communication tasks perfectly with less resources such as registers. In this paper, we solve this problem. By applying quantum repeaters to multiple-unicast communication problem, we give encoding–decoding schemes for source nodes, internal ones and target ones, respectively. Source-target nodes share EPR pairs by using our encoding–decoding schemes over quantum multiple-unicast network. Furthermore, quantum communication can be accomplished perfectly via teleportation. Compared with existed schemes, our schemes can reduce resource consumption and realize long-distance transmission of quantum information.

[1]  P. Kwiat,et al.  Design and analysis of communication protocols for quantum repeater networks , 2015, 1505.01536.

[2]  W. Munro,et al.  From quantum multiplexing to high-performance quantum networking , 2010 .

[3]  Masahito Hayashi,et al.  Prior entanglement between senders enables perfect quantum network coding with modification , 2007, 0706.0197.

[4]  Debbie W. Leung,et al.  Quantum Network Communication—The Butterfly and Beyond , 2010, IEEE Transactions on Information Theory.

[5]  A. Fowler,et al.  Surface code quantum communication. , 2009, Physical review letters.

[6]  K. Nemoto,et al.  System Design for a Long-Line Quantum Repeater , 2007, IEEE/ACM Transactions on Networking.

[7]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[8]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[9]  Martin Rötteler,et al.  Perfect quantum network communication protocol based on classical network coding , 2009, 2010 IEEE International Symposium on Information Theory.

[10]  Jianwei Liu,et al.  Secure quantum network coding for controlled repeater networks , 2016, Quantum Inf. Process..

[11]  I. V. Inlek,et al.  Modular entanglement of atomic qubits using photons and phonons , 2014, Nature Physics.

[12]  H. Briegel,et al.  Entanglement purification and quantum error correction , 2007, 0705.4165.

[13]  Tao Shang,et al.  Quantum network coding for general repeater networks , 2015, Quantum Inf. Process..

[14]  Martin Rötteler,et al.  General Scheme for Perfect Quantum Network Coding with Free Classical Communication , 2009, ICALP.

[15]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[16]  Hiroshi Imai,et al.  Quantum network coding for quantum repeaters , 2012, 1205.3745.

[17]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[18]  Luming Duan,et al.  Colloquium: Quantum networks with trapped ions , 2010 .

[19]  Rodney Van Meter,et al.  Path selection for quantum repeater networks , 2012, ArXiv.

[20]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[21]  Rodney Van Meter,et al.  Analysis of quantum network coding for realistic repeater networks , 2015, 1508.02141.

[22]  Xingming Sun,et al.  Quantum network coding for multi-unicast problem based on 2D and 3D cluster states , 2016, Science China Information Sciences.

[23]  Julien Clément,et al.  26th International Symposium on Theoretical Aspects of Computer Science (STACS 2009) , 2009 .

[24]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[25]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.