Estimating the error variance in nonparametric regression by a covariate-matched u-statistic

For nonparametric regression models with fixed and random design, two classes of estimators for the error variance have been introduced: second sample moments based on residuals from a nonparametric fit, and difference-based estimators. The former are asymptotically optimal but require estimating the regression function; the latter are simple but have larger asymptotic variance. For nonparametric regression models with random covariates, we introduce a class of estimators for the error variance that are related to difference-based estimators: covariate-matched U-statistics. We give conditions on the random weights involved that lead to asymptotically optimal estimators of the error variance. Our explicit construction of the weights uses a kernel estimator for the covariate density.

[1]  G. Wahba Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression , 1978 .

[2]  B. Silverman,et al.  The estimation of residual variance in nonparametric regression , 1988 .

[3]  Michael Buckley,et al.  A graphical method for estimating the residual variance in nonparametric regression , 1989 .

[4]  T. Gasser,et al.  Nonparametric estimation of residual variance revisited , 1993 .

[5]  A. Tsybakov,et al.  Nonparametric recursive variance estimation , 1995 .

[6]  T. Gasser,et al.  Residual variance and residual pattern in nonlinear regression , 1986 .

[7]  Raymond J. Carroll,et al.  Variance Function Estimation in Regression: the Effect of Estimating the Mean , 1988 .

[8]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[9]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[10]  On the estimation of residual variance in nonparametric regression , 1992 .

[11]  J. Marron,et al.  On variance estimation in nonparametric regression , 1990 .

[12]  Michael H. Neumann Fully Data-Driven Nonparametric Variance Estimators , 1994 .

[13]  David Ruppert,et al.  Local polynomial variance-function estimation , 1997 .

[14]  C. Carter,et al.  A Comparison of Variance Estimators in Nonparametric Regression , 1992 .

[15]  Jon A. Wellner,et al.  Application of convolution theorems in semiparametric models with non-i.i.d. data , 2000 .

[16]  P. Hall,et al.  Asymptotically optimal difference-based estimation of variance in nonparametric regression , 1990 .

[17]  Anton Schick,et al.  Estimating linear functionals of the error distribution in nonparametric regression , 2004 .

[18]  Holger Dette,et al.  Estimating the variance in nonparametric regression—what is a reasonable choice? , 1998 .