Miniature directive antennas

This paper presents the work carried out to assess the feasibility of miniature directive antennas. It is based on an analysis of the physical limits of antenna directivity in general and in particular as a function of their compact dimensions. A state of the art is done to identify and classify techniques to increase the directivity of compact antennas.

[1]  T.H. O'Donnell,et al.  Electrically small superdirective arrays using parasitic elements , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[2]  Arthur D. Yaghjian,et al.  Increasing the supergain of electrically small antennas using metamaterials , 2009, 2009 3rd European Conference on Antennas and Propagation.

[3]  Shantanu Padhi,et al.  Identification of an unknown dielectric target in a half‐space using the E‐pulse technique , 2008 .

[4]  R. Hansen,et al.  Fundamental limitations in antennas , 1981, Proceedings of the IEEE.

[5]  R. Stephan,et al.  Miniaturized Antenna Arrays with an Element Separation down to λ/10 , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[6]  H.J. Riblet,et al.  Note on the Maximum Directivity of an Antenna , 1948, Proceedings of the IRE.

[7]  C. W. Oseen,et al.  Die Einsteinsche Nadelstichstrahlung und die Maxwellschen Gleichungen , 1922 .

[8]  Peng Jin,et al.  Metamaterial-Inspired, Electrically Small Huygens Sources , 2010, IEEE Antennas and Wireless Propagation Letters.

[9]  Steven R. Best Progress in the design and realization of an electrically small Huygens source , 2010, 2010 International Workshop on Antenna Technology (iWAT).

[10]  H.A. Wheeler,et al.  Fundamental Limitations of Small Antennas , 1947, Proceedings of the IRE.

[11]  Roger F. Harrington,et al.  Effect of antenna size on gain, bandwidth, and efficiency , 1960 .

[12]  O. Breinbjerg,et al.  Superdirective Magnetic Dipole Array as a First-Order Probe for Spherical Near-Field Antenna Measurements , 2012, IEEE Transactions on Antennas and Propagation.

[13]  David M. Pozar,et al.  New results for minimum Q, maximum gain, and polarization properties of electrically small arbitrary antennas , 2009, 2009 3rd European Conference on Antennas and Propagation.

[14]  Richard W. Ziolkowski,et al.  High-Directivity, Electrically Small, Low-Profile Near-Field Resonant Parasitic Antennas , 2012, IEEE Antennas and Wireless Propagation Letters.

[15]  D. Huebner,et al.  An improved element for use in array antennas , 1972 .

[16]  Hans Gregory Schantz Directive, electrically-small UWB antennas , 2012, 2012 IEEE International Conference on Ultra-Wideband.

[17]  R. Harrington On the gain and beamwidth of directional antennas , 1958 .

[18]  T. Vuong,et al.  Small antenna radiation properties analysis using Spherical Wave Expansion , 2012, 2012 15 International Symposium on Antenna Technology and Applied Electromagnetics.

[19]  J. Mclean A re-examination of the fundamental limits on the radiation Q of electrically small antennas , 1996 .

[20]  N. Engheta,et al.  Metamaterials: Physics and Engineering Explorations , 2006 .

[21]  W. Geyi Physical limitations of antenna , 2003 .

[22]  Stephen R. Forrest,et al.  Novel methods to analyze and fabricate electrically small antennas , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[23]  S. Tretyakov,et al.  A high-impedance surface based antenna — Lose the antenna , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.