Truncated Trust Region Methods Based on Preconditioned Iterative Subalgorithms for Large Sparse Systems of Nonlinear Equations
暂无分享,去创建一个
[1] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[2] T. Steihaug. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .
[3] Yousef Saad,et al. Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..
[4] Thomas F. Coleman,et al. Software for estimating sparse Jacobian matrices , 1984, ACM Trans. Math. Softw..
[5] M. J. D. Powell,et al. On the global convergence of trust region algorithms for unconstrained minimization , 1984, Math. Program..
[6] Homer F. Walker,et al. Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..
[7] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[8] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[9] L. Luksan. Inexact trust region method for large sparse systems of nonlinear equations , 1994 .
[10] Lenhart K. Schubert. Modification of a quasi-Newton method for nonlinear equations with a sparse Jacobian , 1970 .
[11] Yousef Saad,et al. Convergence Theory of Nonlinear Newton-Krylov Algorithms , 1994, SIAM J. Optim..
[12] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.