Analysis of the atmospheric water vapor content determination in the 940-nm band using moderate spectral resolution measurements of direct solar irradiance
暂无分享,去创建一个
Victoria E. Cachorro | Ricardo Vergaz | Jose A. Martinez-Lozano | Pilar Utrillas | Plinio Duran | Angel M. d. Frutos Baraja | V. Cachorro | J. Martínez-Lozano | R. Vergaz | P. Duran | P. Utrillas | Plinio Durán
[1] Victoria E. Cachorro,et al. Retrieval of atmospheric aerosol characteristics from visible extinction data at valladolid (spain) , 1994 .
[2] Albert Arking,et al. Absorption of Solar Energy in the Atmosphere: Discrepancy Between Model and Observations , 1996, Science.
[3] F. E. Fowle,et al. The Spectroscopic Determination of Aqueous Vapor , 1912 .
[4] T. Eck,et al. Sun photometric measurements of atmospheric water vapor column abundance in the 940‐nm band , 1997 .
[5] J H Perluissi,et al. New LOWTRAN band model for water vapor. , 1989, Applied optics.
[6] Daniel Schläpfer,et al. Atmospheric Precorrected Differential Absorption Technique to Retrieve Columnar Water Vapor , 1998 .
[7] Victoria E. Cachorro,et al. A revised study of the validity of the general junge relationship at solar wavelengths: Application to vertical atmospheric aerosol layer studies , 1995 .
[8] Vincenzo Cuomo,et al. A differential absorption technique in the near infra-red to determine precipitable water , 1994 .
[9] A. Goetz,et al. Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data , 1990 .
[10] W. Paul Menzel,et al. Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..
[11] V. Cachorro,et al. Comparison between various models of solar spectral irradiance and experimental data. , 1985, Applied optics.
[12] Victoria E. Cachorro,et al. Determination of total vertical water vapor in the atmosphere , 1986 .
[13] Kurtis J. Thome,et al. Determination of Precipitable Water from Solar Transmission. , 1992 .
[14] Jinxue Wang,et al. History of one family of atmospheric radiative transfer codes , 1994, Remote Sensing.
[15] Victoria E. Cachorro,et al. Retrieval of vertical ozone content using the Chappuis Band with high spectral resolution solar radiation measurements , 1996 .
[16] R L Hulstrom,et al. Solar spectral measurements in the terrestrial environment. , 1982, Applied optics.
[17] R. Green,et al. Water vapor column abundance retrievals during FIFE , 1992 .
[18] V. Cachorro,et al. Determination of the Atmospheric-Water-Vapor Content in the 940-nm Absorption Band by Use of Moderate Spectral-Resolution Measurements of Direct Solar Irradiance. , 1998, Applied optics.
[19] David M. Gates. INFRARED DETERMINATION OF PRECIPITABLE WATER VAPOR IN A VERTICAL COLUMN OF THE EARTH'S ATMOSPHERE , 1956 .
[20] A. Bucholtz,et al. Rayleigh-scattering calculations for the terrestrial atmosphere. , 1995, Applied optics.
[21] Beat Schmid,et al. Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94‐μm region , 1996 .
[22] J. C. Liljegren,et al. A comparison of Sun photometer derivations of total column water vapor and ozone to standard measures of same at the Southern Great Plains Atmospheric Radiation Measurement site , 1995 .
[23] F. Volz. Economical Multispectral Sun Photometer for Measurements of Aerosol Extinction from 0.44 mum to 1.6 mum and Precipitable Water. , 1974, Applied optics.
[24] M W Smith,et al. Three-channel solar radiometer for the determination of atmospheric columnar water vapor. , 1994, Applied optics.
[25] Wolfgang von Hoyningen-Huene,et al. Spectroradiometer with wedge interference filters (SWIF): measurements of the spectral optical depths at Mauna Loa Observatory. , 1995, Applied optics.
[26] Wayne D. Robinson,et al. Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) 'split window' channels , 1982 .
[27] J. Burrows,et al. Absorption cross-sections of NO2 in the UV and visible region (200 – 700 nm) at 298 K , 1987 .
[28] M. Molina,et al. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range , 1986 .
[29] Robert Frouin,et al. Determination from Space of Atmospheric Total Water Vapor Amounts by Differential Absorption near 940 nm: Theory and Airborne Verification , 1990 .
[30] F. J. Exposito,et al. Comparison of total water vapor content obtained from TOVS-NOAA with radio-soundings data in Canary Islands zone , 1995, Remote Sensing.
[31] V E Cachorro,et al. Determination of the Angstrom turbidity parameters. , 1987, Applied optics.
[32] Juergen Fischer,et al. Remote sensing of water vapor within the solar spectrum , 1995, Remote Sensing.
[33] D. M. Gates,et al. Infrared Transmission of the Atmosphere to Solar Radiation , 1963 .
[34] Jessica A. Faust,et al. Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .
[35] Victoria E. Cachorro,et al. The influence of ångström parameters on calculated direct solar spectral irradiances at high turbidity , 1987 .
[36] F. X. Kneizys,et al. Line shape and the water vapor continuum , 1989 .
[37] J. Conel,et al. Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm - Sensitivity analysis and application to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data , 1993 .
[38] J. Susskind,et al. Remote Sensing of Weather and Climate Parameters From , 1984 .
[39] María Pilar Utrillas Esteban. Estudio de aerosoles a partir de medidas de irradiancia solar espectral , 1995 .