Analysis of the atmospheric water vapor content determination in the 940-nm band using moderate spectral resolution measurements of direct solar irradiance

We have determined the vertical integrated water vapor of the atmosphere based on the absorption features of the 940- nm band by means of ground-based measurements of direct solar spectral irradiances and modeled ones. The experimental irradiance data were performed under clear skies with a LIcor 1800 spectroradiometer, based on a monochromator system, of high to moderate spectral resolution in the 300-1100 nm range. The modeled data are based on the monochromatic approaches for atmospheric transmittance constituents, where for water vapor we used the band-model transmittance of LOWTRAN7 code. The method here used is a curve fitting procedure making use of the whole shape band absorption information and the contribution of molecular and aerosol constituents retrieving a unique water vapor value. The method were used to determine water vapor values for the period from March to November of 1995 at a rural station in Valladolid under different atmospheric conditions. The contribution of continuum absorption was also evaluated in the retrieval, obtaining lower values from 13 to 30 percent. This contribution appears as considerable greater than those expected.

[1]  Victoria E. Cachorro,et al.  Retrieval of atmospheric aerosol characteristics from visible extinction data at valladolid (spain) , 1994 .

[2]  Albert Arking,et al.  Absorption of Solar Energy in the Atmosphere: Discrepancy Between Model and Observations , 1996, Science.

[3]  F. E. Fowle,et al.  The Spectroscopic Determination of Aqueous Vapor , 1912 .

[4]  T. Eck,et al.  Sun photometric measurements of atmospheric water vapor column abundance in the 940‐nm band , 1997 .

[5]  J H Perluissi,et al.  New LOWTRAN band model for water vapor. , 1989, Applied optics.

[6]  Daniel Schläpfer,et al.  Atmospheric Precorrected Differential Absorption Technique to Retrieve Columnar Water Vapor , 1998 .

[7]  Victoria E. Cachorro,et al.  A revised study of the validity of the general junge relationship at solar wavelengths: Application to vertical atmospheric aerosol layer studies , 1995 .

[8]  Vincenzo Cuomo,et al.  A differential absorption technique in the near infra-red to determine precipitable water , 1994 .

[9]  A. Goetz,et al.  Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data , 1990 .

[10]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[11]  V. Cachorro,et al.  Comparison between various models of solar spectral irradiance and experimental data. , 1985, Applied optics.

[12]  Victoria E. Cachorro,et al.  Determination of total vertical water vapor in the atmosphere , 1986 .

[13]  Kurtis J. Thome,et al.  Determination of Precipitable Water from Solar Transmission. , 1992 .

[14]  Jinxue Wang,et al.  History of one family of atmospheric radiative transfer codes , 1994, Remote Sensing.

[15]  Victoria E. Cachorro,et al.  Retrieval of vertical ozone content using the Chappuis Band with high spectral resolution solar radiation measurements , 1996 .

[16]  R L Hulstrom,et al.  Solar spectral measurements in the terrestrial environment. , 1982, Applied optics.

[17]  R. Green,et al.  Water vapor column abundance retrievals during FIFE , 1992 .

[18]  V. Cachorro,et al.  Determination of the Atmospheric-Water-Vapor Content in the 940-nm Absorption Band by Use of Moderate Spectral-Resolution Measurements of Direct Solar Irradiance. , 1998, Applied optics.

[19]  David M. Gates INFRARED DETERMINATION OF PRECIPITABLE WATER VAPOR IN A VERTICAL COLUMN OF THE EARTH'S ATMOSPHERE , 1956 .

[20]  A. Bucholtz,et al.  Rayleigh-scattering calculations for the terrestrial atmosphere. , 1995, Applied optics.

[21]  Beat Schmid,et al.  Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94‐μm region , 1996 .

[22]  J. C. Liljegren,et al.  A comparison of Sun photometer derivations of total column water vapor and ozone to standard measures of same at the Southern Great Plains Atmospheric Radiation Measurement site , 1995 .

[23]  F. Volz Economical Multispectral Sun Photometer for Measurements of Aerosol Extinction from 0.44 mum to 1.6 mum and Precipitable Water. , 1974, Applied optics.

[24]  M W Smith,et al.  Three-channel solar radiometer for the determination of atmospheric columnar water vapor. , 1994, Applied optics.

[25]  Wolfgang von Hoyningen-Huene,et al.  Spectroradiometer with wedge interference filters (SWIF): measurements of the spectral optical depths at Mauna Loa Observatory. , 1995, Applied optics.

[26]  Wayne D. Robinson,et al.  Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) 'split window' channels , 1982 .

[27]  J. Burrows,et al.  Absorption cross-sections of NO2 in the UV and visible region (200 – 700 nm) at 298 K , 1987 .

[28]  M. Molina,et al.  Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range , 1986 .

[29]  Robert Frouin,et al.  Determination from Space of Atmospheric Total Water Vapor Amounts by Differential Absorption near 940 nm: Theory and Airborne Verification , 1990 .

[30]  F. J. Exposito,et al.  Comparison of total water vapor content obtained from TOVS-NOAA with radio-soundings data in Canary Islands zone , 1995, Remote Sensing.

[31]  V E Cachorro,et al.  Determination of the Angstrom turbidity parameters. , 1987, Applied optics.

[32]  Juergen Fischer,et al.  Remote sensing of water vapor within the solar spectrum , 1995, Remote Sensing.

[33]  D. M. Gates,et al.  Infrared Transmission of the Atmosphere to Solar Radiation , 1963 .

[34]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[35]  Victoria E. Cachorro,et al.  The influence of ångström parameters on calculated direct solar spectral irradiances at high turbidity , 1987 .

[36]  F. X. Kneizys,et al.  Line shape and the water vapor continuum , 1989 .

[37]  J. Conel,et al.  Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm - Sensitivity analysis and application to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data , 1993 .

[38]  J. Susskind,et al.  Remote Sensing of Weather and Climate Parameters From , 1984 .

[39]  María Pilar Utrillas Esteban Estudio de aerosoles a partir de medidas de irradiancia solar espectral , 1995 .