A universal method for the detection and identification of Aphidiinae parasitoids within their aphid hosts

Molecular methods are increasingly used to detect and identify parasites in their hosts. However, existing methods are generally not appropriate for studying complex host–parasite interactions because they require prior knowledge of species composition. DNA barcoding is a molecular method that allows identifying species using DNA sequences as an identification key. We used DNA amplification with primers common to aphid parasitoids and sequencing of the amplified fragment to detect and identify parasitoids in their hosts, without prior knowledge on the species potentially present. To implement this approach, we developed a method based on 16S rRNA mitochondrial gene and LWRh nuclear gene. First, we designed two primer pairs specific to Aphidiinae (Hymenoptera), the main group of aphid parasitoids. Second, we tested whether the amplified regions could correctly identify Aphidiinae species and found that 61 species were accurately identified of 75 tested. We then determined the ability of each primer pair to detect immature parasitoids inside their aphid host. Detection was earlier for 16S than for LWRh, with parasitoids detected, respectively, 24 and 48 h after egg injection. Finally, we applied this method to assess parasitism rate in field populations of several aphid species. The interest of this tool for analysing aphid‐parasitoid food webs is discussed.

[1]  S. Behura,et al.  Molecular marker systems in insects: current trends and future avenues , 2006, Molecular ecology.

[2]  P. Hebert,et al.  Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[3]  K. Giles,et al.  Estimation of Hymenopteran Parasitism in Cereal Aphids by Using Molecular Markers , 2005 .

[4]  W. Day Estimating Mortality Caused by Parasites and Diseases of Insects: Comparisons of the Dissection and Rearing Methods , 1994 .

[5]  M. O'Neal,et al.  Natural Enemies: An Introduction to Biological Control , 2007 .

[6]  B. Crespi,et al.  Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers , 1994 .

[7]  S. Jarman,et al.  Blocking primers to enhance PCR amplification of rare sequences in mixed samples – a case study on prey DNA in Antarctic krill stomachs , 2008, Frontiers in Zoology.

[8]  M. Hoy Insect Molecular Genetics , 1994 .

[9]  F. González-Candelas,et al.  An 18S rDNA-based molecular phylogeny of aphidiinae (Hymenoptera: braconidae). , 2000, Molecular phylogenetics and evolution.

[10]  E. Bagagli,et al.  Cryptic species of Paracoccidioides brasiliensis: impact on paracoccidioidomycosis immunodiagnosis , 2013, Memorias do Instituto Oswaldo Cruz.

[11]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[12]  C. Athanassiou,et al.  Praon Haliday (Hymenoptera: Braconidae: Aphidiinae) of Southeastern Europe: key, host range and phylogenetic relationships , 2005 .

[13]  M. Traugott,et al.  Endoparasitism in cereal aphids: molecular analysis of a whole parasitoid community , 2008, Molecular ecology.

[14]  Shirley A. Miller,et al.  A simple salting out procedure for extracting DNA from human nucleated cells. , 1988, Nucleic acids research.

[15]  Camille J. Delebecque,et al.  Cryptic Species of Parasitoids Attacking the Soybean Aphid (Hemiptera: Aphididae) in Asia: Binodoxys communis and Binodoxys koreanus (Hymenoptera: Braconidae: Aphidiinae) , 2009 .

[16]  C. Anselme,et al.  Evolutionary ecology of the interactions between aphids and their parasitoids. , 2010, Comptes rendus biologies.

[17]  M. Ashfaq,et al.  Estimating parasitism levels in Lygus spp. (Hemiptera: Miridae) field populations using standard and molecular techniques , 2004 .

[18]  Astrid Cruaud,et al.  Identification of molecular markers for DNA barcoding in the Aphidiinae (Hym. Braconidae) , 2012, Molecular ecology resources.

[19]  T. Hance,et al.  Enhancing parasitism of wheat aphids through apparent competition: a tool for biological control , 2004 .

[20]  Søren Højsgaard,et al.  Statistical Inference in Context Specific Interaction Models for Contingency Tables , 2004 .

[21]  W. Völkl,et al.  A phylogeny of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) inferred from mitochondrial NADH 1 dehydrogenase gene sequence. , 1999, Molecular phylogenetics and evolution.

[22]  U. Kuhlmann,et al.  Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of Arthropods , 2007 .

[23]  R. Belshaw,et al.  A molecular phylogeny of the Aphidiinae (Hymenoptera: Braconidae). , 1997, Molecular phylogenetics and evolution.

[24]  N. Elliott,et al.  Genetic Similarities Among Geographic Isolates of Lysiphlebus testaceipes (Hymenoptera: Aphidiidae) Differing in Cold Temperature Tolerances , 2004 .

[25]  P. Mardulyn,et al.  The major opsin in bees (Insecta: Hymenoptera): A promising nuclear gene for higher level phylogenetics. , 1999, Molecular phylogenetics and evolution.

[26]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[27]  M. Greenstone Molecular methods for assessing insect parasitism , 2006, Bulletin of Entomological Research.

[28]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[29]  G. Stathas,et al.  The Aphidiinae (Hymenoptera: Ichneumonoidea: Braconidae) of Greece , 2001, Phytoparasitica.

[30]  C. Athanassiou,et al.  Phylogenetic relationships between the genera Aphidius and Lysaphidus (Hymenoptera: Braconidae: Aphidiinae) with description of Aphidius iranicus sp. nov , 2007, The Canadian Entomologist.

[31]  R Arditi,et al.  Detection, identification and geographical distribution of European corn borer larval parasitoids using molecular markers , 2005, Molecular ecology.

[32]  H. Cornell,et al.  Maximum parasitism rates and successful biological control. , 1994, Science.

[33]  M. Greenstone,et al.  Molecular Evidence for a Species Complex in the Genus Aphelinus (Hymenoptera: Aphelinidae), with Additional Data on Aphidiine Phylogeny (Hymenoptera: Braconidae) , 2002 .

[34]  C. G. Jackson,et al.  Potential of Detection and Identification of Nymphal Parasitoids (Hymenoptera: Braconidae) of Lygus Bugs (Heteroptera: Miridae) by Using Polymerase Chain Reaction and ITS2 Sequence Analysis Techniques , 2004 .

[35]  H. Loxdale,et al.  Molecular markers to study population structure and dynamics in beneficial insects (predators and parasitoids) , 2004 .

[36]  P. Taberlet,et al.  DNA barcoding for ecologists. , 2009, Trends in ecology & evolution.

[37]  C. Athanassiou,et al.  A survey of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) of Southeastern Europe and their aphid-plant associations , 2004 .

[38]  M. Hoy Chapter 12 – Molecular Genetics of Insect Behavior , 1994 .

[39]  M. Traugott,et al.  INVITED REVIEW: Molecular analysis of predation: a review of best practice for DNA‐based approaches , 2008, Molecular ecology.

[40]  W. Day,et al.  Determining Parasitoid Species Composition in a Host Population: A Molecular Approach , 2000 .

[41]  M. Traugott,et al.  Molecular analysis of predation on parasitized hosts , 2008, Bulletin of Entomological Research.

[42]  F. Bigler,et al.  Molecular methods for the identification of biological control agents at the species and strain level. , 2006 .

[43]  B. Walker,et al.  A PROCEDURE FOR MULTIDISCIPLINARY ECOSYSTEM RESEARCH: WITH REFERENCE TO THE SOUTH AFRICAN SAVANNA ECOSYSTEM PROJECT , 1978 .

[44]  W. Völkl,et al.  Phylogenetic relationships among genera of Aphidiinae (Hymenoptera: Braconidae) based on DNA sequence of the mitochondrial 16S rRNA gene , 2000 .

[45]  P. Dang,et al.  Detection and Differentiation of Parasitoids (Hymenoptera: Aphidiidae and Aphelinidae) of the Brown Citrus Aphid (Homoptera: Aphididae): Species-Specific Polymerase Chain Reaction Amplification of 18S rDNA , 2004 .

[46]  H. Godfray,et al.  Parasitoids: Behavioral and Evolutionary Ecology , 1993 .

[47]  A. Petrović MONOCTONUS HALIDAY, FALCICONUS MACKAUER AND HARKERIA CAMERON (HYMENOPTERA, BRACONIDAE, APHIDIINAE) IN SERBIA AND MONTENEGRO: TRITROPHIC ASSOCIATIONS AND KEY , 2007 .

[48]  P. T. Smith,et al.  PCR primers for the amplification of four insect mitochondrial gene fragments , 1995, Insect molecular biology.

[49]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[50]  Ulrich Kuhlmann,et al.  A large-scale comparison of conventional and molecular methods for the evaluation of host-parasitoid associations in non-target risk-assessment studies , 2008 .

[51]  P. Hebert,et al.  Identification of Birds through DNA Barcodes , 2004, PLoS biology.

[52]  T. Haye,et al.  A single-step multiplex PCR assay for the detection of European Peristenus spp., parasitoids of Lygus spp. , 2005 .

[53]  M. Hochberg,et al.  Parasitoid population biology. , 2000 .

[54]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .