An approach for the prediction of temperature dependence of sonic velocity: Application to liquid alkali metals and molten UO2

[1]  A. Azad,et al.  Letter to the editorInternal pressure approach for the estimation of critical temperatures of Li(l), K(l) and NaK(l) , 1984 .

[2]  S. Ganesan,et al.  A new approach for the estimation of the critical temperature: Application to sodium , 1983 .

[3]  S. D. Gabelnick,et al.  Geometry of the UO2 molecule , 1977 .

[4]  S. K. Kapil Evaluation of the thermodynamic critical constants for uranium di-oxide , 1976 .

[5]  E. A. Fischer,et al.  Critical assessment of equation of state data for UO2 , 1976 .

[6]  O. D. Slagle,et al.  Compressibility of molten UO2 , 1971 .

[7]  M. G. Chasanov,et al.  Enthalpy of liquid uranium dioxide to 3500 °K☆ , 1971 .

[8]  R. P. Messmer,et al.  Variational principle for excited states: Exact formulation and other extensions , 1970 .

[9]  Choi Dong Sik,et al.  The significant structure theory on the sound velocity and internal pressure of liquids , 1970 .

[10]  R. W. Ohse High‐Temperature Vapor‐Pressure Studies of UO2 by the Effusion Method and Its Thermodynamic Interpretation , 1966 .

[11]  R. Takagi,et al.  Sound velocity and isobaric specific heat in the molten system NaNO2-NaNO3 , 1985 .

[12]  Leonard Leibowitz,et al.  Equation of state of uranium dioxide , 1979 .

[13]  N. B. Vargaftik Tables on the thermophysical properties of liquids and gases: In normal and dissociated states , 1975 .

[14]  M. Tetenbaum,et al.  Total pressure of uranium-bearing species over oxygen-deficient urania☆ , 1970 .