A new justification of the Jacobi–Davidson method for large eigenproblems

Abstract The Jacobi–Davidson method is known to converge at least quadratically if the correction equation is solved exactly, and it is common experience that the fast convergence is maintained if the correction equation is solved only approximately. In this note we derive the Jacobi–Davidson method in a way that explains this robust behavior.

[1]  K. Neymeyr A geometric theory for preconditioned inverse iteration. I : Extrema of the Rayleigh quotient , 2001 .

[2]  Klaus Neymeyr,et al.  A geometric theory for preconditioned inverse iteration IV: On the fastest convergence cases , 2006 .

[3]  A. Knyazev,et al.  A Geometric Theory for Preconditioned Inverse Iteration. III:A Short and Sharp Convergence Estimate for Generalized EigenvalueProblems. , 2001 .

[4]  L. Eldén,et al.  Inexact Rayleigh Quotient-Type Methods for Eigenvalue Computations , 2002 .

[5]  Yvan Notay,et al.  Convergence Analysis of Inexact Rayleigh Quotient Iteration , 2002, SIAM J. Matrix Anal. Appl..

[6]  Valeria Simoncini,et al.  Variable Accuracy of Matrix-Vector Products in Projection Methods for Eigencomputation , 2005, SIAM J. Numer. Anal..

[7]  Klaus Neymeyr,et al.  A geometric theory for preconditioned inverse iteration applied to a subspace , 2002, Math. Comput..

[8]  K. Meerbergen,et al.  The Restarted Arnoldi Method Applied to Iterative Linear System Solvers for the Computation of Rightmost Eigenvalues , 1997 .

[9]  Karl Meerbergen,et al.  Locking and Restarting Quadratic Eigenvalue Solvers , 2000, SIAM J. Sci. Comput..

[10]  Karl Meerbergen,et al.  Using Generalized Cayley Transformations within an Inexact Rational Krylov Sequence Method , 1998, SIAM J. Matrix Anal. Appl..

[11]  NEYMEYR A BSTRACT A GEOMETRIC THEORY FOR PRECONDITIONED INVERSE ITERATION II : CONVERGENCE ESTIMATES KLAUS , 2009 .

[12]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[13]  Jasper van den Eshof,et al.  The convergence of Jacobi-Davidson iterations for Hermitian eigenproblems , 2002, Numer. Linear Algebra Appl..

[14]  Yvan Notay,et al.  Robust parameter‐free algebraic multilevel preconditioning , 2002, Numer. Linear Algebra Appl..

[15]  Yvan Notay,et al.  Is Jacobi-Davidson Faster than Davidson? , 2005, SIAM J. Matrix Anal. Appl..

[16]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[17]  Yvan Notay,et al.  Combination of Jacobi–Davidson and conjugate gradients for the partial symmetric eigenproblem , 2002, Numer. Linear Algebra Appl..

[18]  C. Jacobi,et al.  C. G. J. Jacobi's Gesammelte Werke: Über ein leichtes Verfahren, die in der Theorie der Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen , 1846 .

[19]  H. V. D. Vorst,et al.  Jacobi-Davidson style QR and QZ algorithms for the partial reduction of matrix pencils , 1996 .

[20]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[21]  C. Jacobi Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). , 2022 .

[22]  Amina Bouras,et al.  A relaxation strategy for the Arnoldi method in eigenproblems , 2000 .

[23]  A. M. Ostrowski,et al.  On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. III , 1959 .

[24]  Heinrich Voss,et al.  A Jacobi-Davidson Method for Nonlinear Eigenproblems , 2004, International Conference on Computational Science.

[25]  Yvan Notay,et al.  The Jacobi–Davidson method , 2006 .

[26]  K. Neymeyr A geometric theory forpreconditioned inverse iterationII: Convergence estimates , 2001 .

[27]  P. Smit,et al.  THE EFFECTS OF INEXACT SOLVERS IN ALGORITHMS FOR SYMMETRIC EIGENVALUE PROBLEMS , 1999 .

[28]  A. Ostrowski On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. I , 1957 .

[29]  M. Hochstenbach,et al.  Two-sided and alternating Jacobi-Davidson , 2001 .

[30]  G. Golub,et al.  Large sparse symmetric eigenvalue problems with homogeneous linear constraints: the Lanczos process with inner–outer iterations , 2000 .

[31]  Yvan Notay,et al.  Inner iterations in eigenvalue solvers , 2005 .

[32]  Gene H. Golub,et al.  An Inverse Free Preconditioned Krylov Subspace Method for Symmetric Generalized Eigenvalue Problems , 2002, SIAM J. Sci. Comput..

[33]  H. Voss An Arnoldi Method for Nonlinear Eigenvalue Problems , 2004 .

[34]  Timo Betcke,et al.  A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems , 2004, Future Gener. Comput. Syst..

[35]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[36]  A. Neumaier RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .