A new justification of the Jacobi–Davidson method for large eigenproblems
暂无分享,去创建一个
[1] K. Neymeyr. A geometric theory for preconditioned inverse iteration. I : Extrema of the Rayleigh quotient , 2001 .
[2] Klaus Neymeyr,et al. A geometric theory for preconditioned inverse iteration IV: On the fastest convergence cases , 2006 .
[3] A. Knyazev,et al. A Geometric Theory for Preconditioned Inverse Iteration. III:A Short and Sharp Convergence Estimate for Generalized EigenvalueProblems. , 2001 .
[4] L. Eldén,et al. Inexact Rayleigh Quotient-Type Methods for Eigenvalue Computations , 2002 .
[5] Yvan Notay,et al. Convergence Analysis of Inexact Rayleigh Quotient Iteration , 2002, SIAM J. Matrix Anal. Appl..
[6] Valeria Simoncini,et al. Variable Accuracy of Matrix-Vector Products in Projection Methods for Eigencomputation , 2005, SIAM J. Numer. Anal..
[7] Klaus Neymeyr,et al. A geometric theory for preconditioned inverse iteration applied to a subspace , 2002, Math. Comput..
[8] K. Meerbergen,et al. The Restarted Arnoldi Method Applied to Iterative Linear System Solvers for the Computation of Rightmost Eigenvalues , 1997 .
[9] Karl Meerbergen,et al. Locking and Restarting Quadratic Eigenvalue Solvers , 2000, SIAM J. Sci. Comput..
[10] Karl Meerbergen,et al. Using Generalized Cayley Transformations within an Inexact Rational Krylov Sequence Method , 1998, SIAM J. Matrix Anal. Appl..
[11] NEYMEYR A BSTRACT. A GEOMETRIC THEORY FOR PRECONDITIONED INVERSE ITERATION II : CONVERGENCE ESTIMATES KLAUS , 2009 .
[12] Gerard L. G. Sleijpen,et al. Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..
[13] Jasper van den Eshof,et al. The convergence of Jacobi-Davidson iterations for Hermitian eigenproblems , 2002, Numer. Linear Algebra Appl..
[14] Yvan Notay,et al. Robust parameter‐free algebraic multilevel preconditioning , 2002, Numer. Linear Algebra Appl..
[15] Yvan Notay,et al. Is Jacobi-Davidson Faster than Davidson? , 2005, SIAM J. Matrix Anal. Appl..
[16] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[17] Yvan Notay,et al. Combination of Jacobi–Davidson and conjugate gradients for the partial symmetric eigenproblem , 2002, Numer. Linear Algebra Appl..
[18] C. Jacobi,et al. C. G. J. Jacobi's Gesammelte Werke: Über ein leichtes Verfahren, die in der Theorie der Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen , 1846 .
[19] H. V. D. Vorst,et al. Jacobi-Davidson style QR and QZ algorithms for the partial reduction of matrix pencils , 1996 .
[20] H. V. D. Vorst,et al. Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .
[21] C. Jacobi. Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). , 2022 .
[22] Amina Bouras,et al. A relaxation strategy for the Arnoldi method in eigenproblems , 2000 .
[23] A. M. Ostrowski,et al. On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. III , 1959 .
[24] Heinrich Voss,et al. A Jacobi-Davidson Method for Nonlinear Eigenproblems , 2004, International Conference on Computational Science.
[25] Yvan Notay,et al. The Jacobi–Davidson method , 2006 .
[26] K. Neymeyr. A geometric theory forpreconditioned inverse iterationII: Convergence estimates , 2001 .
[27] P. Smit,et al. THE EFFECTS OF INEXACT SOLVERS IN ALGORITHMS FOR SYMMETRIC EIGENVALUE PROBLEMS , 1999 .
[28] A. Ostrowski. On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. I , 1957 .
[29] M. Hochstenbach,et al. Two-sided and alternating Jacobi-Davidson , 2001 .
[30] G. Golub,et al. Large sparse symmetric eigenvalue problems with homogeneous linear constraints: the Lanczos process with inner–outer iterations , 2000 .
[31] Yvan Notay,et al. Inner iterations in eigenvalue solvers , 2005 .
[32] Gene H. Golub,et al. An Inverse Free Preconditioned Krylov Subspace Method for Symmetric Generalized Eigenvalue Problems , 2002, SIAM J. Sci. Comput..
[33] H. Voss. An Arnoldi Method for Nonlinear Eigenvalue Problems , 2004 .
[34] Timo Betcke,et al. A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems , 2004, Future Gener. Comput. Syst..
[35] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..
[36] A. Neumaier. RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .