Computational analysis of genome-scale growth-interaction data in Saccharomyces cerevisiae

University of Minnesota Ph.D. dissertation. August 2014. Major: Computer Science. Advisor: Chad L. Myers. 1 computer file (PDF); xiii, 216 pages, appendices A-B.

[1]  A. Wagner,et al.  Asymmetric sequence divergence of duplicate genes. , 2003, Genome research.

[2]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[3]  H. Ronne,et al.  Characterization of temperature-sensitive mutations in the yeast syntaxin 1 homologues Sso1p and Sso2p, and evidence of a distinct function for Sso1p in sporulation. , 2002, Journal of cell science.

[4]  Nan Xiao,et al.  Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli , 2008, Bioinform..

[5]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[6]  Christopher P Austin,et al.  The Knockout Mouse Project , 2004, Nature Genetics.

[7]  Mark Johnson,et al.  NCBI BLAST: a better web interface , 2008, Nucleic Acids Res..

[8]  Dmitri A. Petrov,et al.  Pervasive and Persistent Redundancy among Duplicated Genes in Yeast , 2008, PLoS genetics.

[9]  L. Kruglyak,et al.  Genetic Dissection of Transcriptional Regulation in Budding Yeast , 2002, Science.

[10]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[11]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[12]  Henrik Kaessmann,et al.  Functional diversification of duplicate genes through subcellular adaptation of encoded proteins , 2008, Genome Biology.

[13]  Nevan J Krogan,et al.  Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss , 2007, Molecular systems biology.

[14]  D. Pellman,et al.  Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. , 2000, Science.

[15]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[16]  Richard D. Hayes,et al.  Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis , 2007, Science.

[17]  E. Nunes,et al.  Effects of bleomycin on growth kinetics and survival of Saccharomyces cerevisiae: a model of repair pathways , 1992, Journal of bacteriology.

[18]  K. Verstrepen,et al.  Reconstruction of Ancestral Metabolic Enzymes Reveals Molecular Mechanisms Underlying Evolutionary Innovation through Gene Duplication , 2012, PLoS biology.

[19]  Evan S Snitkin,et al.  Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions , 2008, Genome Biology.

[20]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[21]  C. Pál,et al.  Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast , 2004, Nature.

[22]  N. Price,et al.  Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis , 2010, Proceedings of the National Academy of Sciences.

[23]  Joshua M. Stuart,et al.  MICROARRAY EXPERIMENTS : APPLICATION TO SPORULATION TIME SERIES , 1999 .

[24]  M. Gerstein,et al.  Genomic analysis of the hierarchical structure of regulatory networks , 2006, Proceedings of the National Academy of Sciences.

[25]  B. Dujon,et al.  European functional analysis network (EUROFAN) and the functional analysis of the Saccharomyces cerevisiae genome (minireview) , 1998, Electrophoresis.

[26]  Sean R. Collins,et al.  A strategy for extracting and analyzing large-scale quantitative epistatic interaction data , 2006, Genome Biology.

[27]  A. Force,et al.  Preservation of duplicate genes by complementary, degenerative mutations. , 1999, Genetics.

[28]  Sean R. Collins,et al.  Exploration of the Function and Organization of the Yeast Early Secretory Pathway through an Epistatic Miniarray Profile , 2005, Cell.

[29]  Edith D. Wong,et al.  Saccharomyces Genome Database: the genomics resource of budding yeast , 2011, Nucleic Acids Res..

[30]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[31]  J. Brookfield Can genes be truly redundant? , 1992, Current Biology.

[32]  Polina Golland,et al.  CellProfiler Analyst: data exploration and analysis software for complex image-based screens , 2008, BMC Bioinformatics.

[33]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[34]  Pedro Mendes,et al.  Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network , 2012, BMC Systems Biology.

[35]  J. Pronk Auxotrophic Yeast Strains in Fundamental and Applied Research , 2002, Applied and Environmental Microbiology.

[36]  A. Barabasi,et al.  Interactome Networks and Human Disease , 2011, Cell.

[37]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[38]  E. Lander,et al.  The mystery of missing heritability: Genetic interactions create phantom heritability , 2012, Proceedings of the National Academy of Sciences.

[39]  Grant W. Brown,et al.  Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways , 2004, Nature Biotechnology.

[40]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[41]  Mark D. Rausher,et al.  Escape from adaptive conflict after duplication in an anthocyanin pathway gene , 2008, Nature.

[42]  A. Neiman,et al.  GAS2 and GAS4, a Pair of Developmentally Regulated Genes Required for Spore Wall Assembly in Saccharomyces cerevisiae , 2007, Eukaryotic Cell.

[43]  B. Birren,et al.  Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae , 2004, Nature.

[44]  Kai Li,et al.  Exploring the functional landscape of gene expression: directed search of large microarray compendia , 2007, Bioinform..

[45]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[46]  David Botstein,et al.  Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes , 2013, Proceedings of the National Academy of Sciences.

[47]  A. C. Douglas,et al.  Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. , 2012, Genome research.

[48]  N. Pfanner,et al.  Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. , 2006, Journal of proteome research.

[49]  Ben Lehner,et al.  Genes Confer Similar Robustness to Environmental, Stochastic, and Genetic Perturbations in Yeast , 2010, PloS one.

[50]  M. Snyder,et al.  Localization of the Kar3 kinesin heavy chain-related protein requires the Cik1 interacting protein , 1994, The Journal of cell biology.

[51]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[52]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[53]  M. Bulyk Computational prediction of transcription-factor binding site locations , 2003, Genome Biology.

[54]  T. Hughes,et al.  Why Are There Still Over 1000 Uncharacterized Yeast Genes? , 2007, Genetics.

[55]  Manolis Kellis,et al.  The evolutionary dynamics of the Saccharomyces cerevisiae protein interaction network after duplication , 2008, Proceedings of the National Academy of Sciences.

[56]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[57]  D. Nicolae,et al.  Rapid divergence in expression between duplicate genes inferred from microarray data. , 2002, Trends in genetics : TIG.

[58]  D. Botstein,et al.  Yeast: An Experimental Organism for 21st Century Biology , 2011, Genetics.

[59]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[60]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[61]  Jianzhi Zhang,et al.  Higher duplicability of less important genes in yeast genomes. , 2006, Molecular biology and evolution.

[62]  Thierry Fontaine,et al.  The Gas family of proteins of Saccharomyces cerevisiae: characterization and evolutionary analysis , 2007, Yeast.

[63]  A. Hinnebusch,et al.  YIH1 Is an Actin-binding Protein That Inhibits Protein Kinase GCN2 and Impairs General Amino Acid Control When Overexpressed* , 2004, Journal of Biological Chemistry.

[64]  T. Dobzhansky,et al.  Genetics of Natural Populations. Xiii. Recombination and Variability in Populations of Drosophila Pseudoobscura. , 1946, Genetics.

[65]  B. Rost Twilight zone of protein sequence alignments. , 1999, Protein engineering.

[66]  Peter M Visscher,et al.  Sizing up human height variation , 2008, Nature Genetics.

[67]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[68]  Y. Rong,et al.  Gene targeting by homologous recombination in Drosophila. , 2000, Science.

[69]  Frederick S. Vizeacoumar,et al.  Systematic exploration of essential yeast gene function with temperature-sensitive mutants , 2011, Nature Biotechnology.

[70]  Kevin P. Byrne,et al.  Rate asymmetry after genome duplication causes substantial long-branch attraction artifacts in the phylogeny of Saccharomyces species. , 2006, Molecular biology and evolution.

[71]  Z. Gu,et al.  Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. , 2002, Molecular biology and evolution.

[72]  Duccio Cavalieri,et al.  Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes. , 2006, Gene.

[73]  Matthew A. Hibbs,et al.  Finding function: evaluation methods for functional genomic data , 2006, BMC Genomics.

[74]  Kerry Bloom,et al.  Systematic triple-mutant analysis uncovers functional connectivity between pathways involved in chromosome regulation. , 2013, Cell reports.

[75]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[76]  P. Brown,et al.  Yeast microarrays for genome wide parallel genetic and gene expression analysis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[77]  K. H. Wolfe,et al.  A burst of protein sequence evolution and a prolonged period of asymmetric evolution follow gene duplication in yeast. , 2007, Genome research.

[78]  M. Noordewier,et al.  Genome Streamlining in a Cosmopolitan Oceanic Bacterium , 2005, Science.

[79]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[80]  A. Emili,et al.  Retention of protein complex membership by ancient duplicated gene products in budding yeast. , 2007, Trends in genetics : TIG.

[81]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[82]  B. Magasanik,et al.  Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae , 1995, Journal of bacteriology.

[83]  Owen White,et al.  TIGR Assembler: A New Tool for Assembling Large Shotgun Sequencing Projects , 1995 .

[84]  Kenneth H. Wolfe,et al.  Saccharomyces cerevisiae RM 11-1 a Saccharomyces bayanus Saccharomyces castellii Saccharomyces kluyveri Kluyveromyces lactis Debaryomyces hansenii Candida albicans Saccharomyces paradoxus Saccharomyces mikatae Saccharomyces kudriavzevii Candida glabrata Ashbya gossypii Kluyveromyces waltii Yarrowia , 2006 .

[85]  F. Sanger,et al.  Nucleotide sequence of bacteriophage φX174 DNA , 1977, Nature.

[86]  A. Hughes The evolution of functionally novel proteins after gene duplication , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[87]  C. Landry,et al.  An in Vivo Map of the Yeast Protein Interactome , 2008, Science.

[88]  C. Kaiser,et al.  Physiological Regulation of Membrane Protein Sorting Late in the Secretory Pathway of Saccharomyces cerevisiae , 1997, The Journal of cell biology.

[89]  I. Rayment,et al.  Vik1 Modulates Microtubule-Kar3 Interactions through a Motor Domain that Lacks an Active Site , 2007, Cell.

[90]  Sean R. Collins,et al.  Hierarchical modularity and the evolution of genetic interactomes across species. , 2012, Molecular cell.

[91]  M. Lynch,et al.  The altered evolutionary trajectories of gene duplicates. , 2004, Trends in genetics : TIG.

[92]  U. Sauer,et al.  Metabolic functions of duplicate genes in Saccharomyces cerevisiae. , 2005, Genome research.

[93]  Zhaolei Zhang,et al.  The extensive and condition-dependent nature of epistasis among whole-genome duplicates in yeast. , 2008, Genome research.

[94]  Kevin P. Byrne,et al.  The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. , 2005, Genome research.

[95]  Gary D. Bader,et al.  The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function , 2010, Nucleic Acids Res..

[96]  P. Visscher,et al.  Estimating missing heritability for disease from genome-wide association studies. , 2011, American journal of human genetics.

[97]  A. Goffeau,et al.  The uses of genome-wide yeast mutant collections , 2004, Genome Biology.

[98]  B. Andrews,et al.  Systematic mapping of genetic interaction networks. , 2009, Annual review of genetics.

[99]  Ran Kafri,et al.  The regulatory utilization of genetic redundancy through responsive backup circuits. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[100]  Bob Goldstein,et al.  Engineering the Caenorhabditis elegans Genome Using Cas9-Triggered Homologous Recombination , 2013, Nature Methods.

[101]  C. Kaiser,et al.  LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway , 2003, The Journal of cell biology.

[102]  Daniel J. Anderson,et al.  Cik1 Targets the Minus-End Kinesin Depolymerase Kar3 to Microtubule Plus Ends , 2005, Current Biology.

[103]  Elizabeth N. Koch,et al.  Conserved rules govern genetic interaction degree across species , 2012, Genome Biology.

[104]  Christina A. Cuomo,et al.  Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth , 2012, Genome research.

[105]  Yuanfang Guan,et al.  Functional Analysis of Gene Duplications in Saccharomyces cerevisiae , 2007, Genetics.

[106]  Anaïs Baudot,et al.  A scale of functional divergence for yeast duplicated genes revealed from analysis of the protein-protein interaction network , 2004, Genome Biology.

[107]  U. Sauer,et al.  A prototrophic deletion mutant collection for yeast metabolomics and systems biology , 2012, Nature Biotechnology.

[108]  Jianzhi Zhang,et al.  Rapid Subfunctionalization Accompanied by Prolonged and Substantial Neofunctionalization in Duplicate Gene Evolution , 2005, Genetics.

[109]  Edith D. Wong,et al.  The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now , 2013, G3: Genes, Genomes, Genetics.

[110]  Sebastian Wernicke,et al.  FANMOD: a tool for fast network motif detection , 2006, Bioinform..

[111]  Ronald W. Davis,et al.  Role of duplicate genes in genetic robustness against null mutations , 2003, Nature.

[112]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[113]  Andreas Wagner,et al.  Asymmetric functional divergence of duplicate genes in yeast. , 2002, Molecular biology and evolution.

[114]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[115]  C. C. Lindegren The yeast cell : its genetics and cytology , 1949 .

[116]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[117]  Raamesh Deshpande,et al.  Computational methods to explore chemical and genetic interaction networks for novel human therapies , 2013 .