Optimal trajectory planning for industrial robot along a specified path with payload constraint using trigonometric splines

This paper presents a general methodology for the offline planning of trajectory of a six axis serial robot along a specified path. The objective of trajectory planning is to minimise a cost function when subjected to joint angles, joint velocities, acceleration, jerks, torques and gripping force constraints by considering dynamic of the robot. A trigonometric spline is used to represent the trajectory. This non-linear constrained optimisation problem consists of 6 objectives, 67 constraints and 48 variables. The cost function is a weighted balance of travelling time, actuator torques, singularity avoidance, joint jerks, joint accelerations and gripping force. The optimisation problem is solved by using two methods, namely sequential quadratic programming and genetic algorithm. The proposed methodology is implemented for trajectory planning of six degree of freedom industrial robot and results obtained with two optimisation techniques are compared.

[1]  Ashraf Elnagar,et al.  On optimal constrained trajectory planning in 3D environments , 2000, Robotics Auton. Syst..

[2]  A. Gasparetto,et al.  A technique for time-jerk optimal planning of robot trajectories , 2008 .

[3]  Chih-Jer Lin,et al.  Motion planning of redundant robots by perturbation method , 2004 .

[4]  R. Saravanan,et al.  Evolutionary collision-free optimal trajectory planning for intelligent robots , 2008 .

[5]  Marco Ceccarelli,et al.  An optimum robot path planning with payload constraints , 2002, Robotica.

[6]  Yao-Chon Chen Solving robot trajectory planning problems with uniform cubic B‐splines , 1991 .

[7]  Edgard Jamhour,et al.  Planning smooth trajectories along parametric paths , 1996 .

[8]  Dan Simon The application of neural networks to optimal robot trajectory planning , 1993, Robotics Auton. Syst..

[9]  Marco Ceccarelli,et al.  Effect of basic numerical parameters on a path planning of robots taking into account actuating energy , 2004 .

[10]  R. Saravanan,et al.  Multiobjective trajectory planner for industrial robots with payload constraints , 2008, Robotica.

[11]  Yury Stepanenko,et al.  Iterative dynamic programming: an approach to minimum energy trajectory planning for robotic manipulators , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[12]  R. Saravanan,et al.  Evolutionary Minimum Cost Trajectory Planning for Industrial Robots , 2008, J. Intell. Robotic Syst..

[13]  Shui Xiaoping Optimization of the Trajectory Planning of Robot Manipulators Taking into Account the Dynamics of the System , 2003 .

[14]  C.-H. Wang,et al.  Constrained minimum-time path planning for robot manipulators via virtual knots of the cubic B-spline functions , 1990 .

[15]  Jing Zhao,et al.  Load distribution and joint trajectory planning of coordinated manipulation for two redundant robots , 1999 .

[16]  A. Piazzi,et al.  Global minimum-time trajectory planning of mechanical manipulators using interval analysis , 1998 .

[17]  Antonio Visioli Trajectory planning of robot manipulators by using algebraic and trigonometric splines , 2000, Robotica.

[18]  Kang G. Shin,et al.  Minimum-time control of robotic manipulators with geometric path constraints , 1985 .

[19]  Zvi Shiller,et al.  Time-energy optimal control of articulated systems with geometric path constraints , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[20]  S. F. P. Saramago,et al.  OPTIMAL TRAJECTORY PLANNING OF ROBOT MANIPULATORS IN THE PRESENCE OF MOVING OBSTACLES , 2000 .

[21]  Steven Dubowsky,et al.  Robot Path Planning with Obstacles, Actuator, Gripper, and Payload Constraints , 1989, Int. J. Robotics Res..

[22]  Kostas J. Kyriakopoulos,et al.  Minimum jerk path generation , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[23]  Shital S. Chiddarwar,et al.  Offline decoupled path planning approach for effective coordination of multiple robots , 2009, Robotica.

[24]  E. Croft,et al.  Smooth and time-optimal trajectory planning for industrial manipulators along specified paths , 2000 .

[25]  Vincent Hayward,et al.  Singularity-Robust Trajectory Generation , 2001, Int. J. Robotics Res..

[26]  Shital S. Chiddarwar,et al.  COORDINATION STRATEGY FOR PATH PLANNING OF MULTIPLE MANIPULATORS IN WORKCELL ENVIRONMENT , 2007 .

[27]  Dan Simon,et al.  Optimal trigonometric robot joint trajectories , 1991, Robotica.

[28]  A. Gasparetto,et al.  A new method for smooth trajectory planning of robot manipulators , 2007 .

[29]  Marco Ceccarelli,et al.  An Optimum Design Procedure for Two-Finger Grippers: A Case of Study , 2002 .

[30]  James E. Bobrow,et al.  Minimum effort motions for open chain manipulators with task-dependent end-effector constraints , 1997, Proceedings of International Conference on Robotics and Automation.

[31]  Young-Kiu Choi,et al.  Optimal trajectory planning and sliding mode control for robots using evolution strategy , 2000, Robotica.

[32]  C. Lin,et al.  Formulation and optimization of cubic polynomial joint trajectories for industrial robots , 1983 .

[33]  Valder Steffen,et al.  Trajectory Modeling of Robot Manipulators in the Presence of Obstacles , 2001 .

[34]  Andrew K. C. Wong,et al.  A singularities avoidance method for the trajectory planning of redundant and nonredundant robot manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[35]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[36]  Tuna Balkan,et al.  A dynamic programming approach to optimal control of robotic manipulators , 1998 .

[37]  Frank Chongwoo Park,et al.  Optimal robot motions for physical criteria , 2001, J. Field Robotics.

[38]  O. V. Stryk,et al.  Optimal control of the industrial robot Manutec r3 , 1994 .

[39]  S. Payandeh,et al.  On computation of grasping forces in dynamic manipulation using a three-fingered grasp , 1998 .