Algorithms in data mining using matrix and tensor methods
暂无分享,去创建一个
[1] L. Lathauwer,et al. Dimensionality reduction for higher-order tensors: algorithms and applications , 2008 .
[2] Berkant Savas. Analyses and Tests of Handwritten Digit Recognition Algorithms , 2004 .
[3] Demetri Terzopoulos,et al. Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.
[4] W. Boothby. An introduction to differentiable manifolds and Riemannian geometry , 1975 .
[5] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[6] Demetri Terzopoulos,et al. Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..
[7] Bo Wahlberg,et al. A linear regression approach to state-space subspace system identification , 1996, Signal Process..
[8] Tamara G. Kolda,et al. Efficient MATLAB Computations with Sparse and Factored Tensors , 2007, SIAM J. Sci. Comput..
[9] Lars Elden,et al. Matrix methods in data mining and pattern recognition , 2007, Fundamentals of algorithms.
[10] D. Gabay. Minimizing a differentiable function over a differential manifold , 1982 .
[11] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[12] Tamara G. Kolda,et al. Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..
[13] Lawrence B. Holder,et al. Mining Graph Data , 2006 .
[14] L. Lathauwer,et al. On the Best Rank-1 and Rank-( , 2004 .
[15] Gene H. Golub,et al. Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..
[16] M. Alex O. Vasilescu. Multilinear independent component analysis , 2004 .
[17] G. Golub,et al. A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies , 2007, Proceedings of the National Academy of Sciences.
[18] Berkant Savas,et al. Best multilinear rank approximation of tensors with quasi-Newton methods on Grassmannians , 2008 .
[19] L. Lathauwer,et al. Signal Processing based on Multilinear Algebra , 1997 .
[20] Kurt Stockinger,et al. Multi-dimensional bitmap indices for optimising data access within object oriented databases at CERN , 2001 .
[21] T. Kollo,et al. Advanced Multivariate Statistics with Matrices , 2005 .
[22] F. L. Hitchcock. Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .
[23] D. Botstein,et al. Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[24] Wolfgang Hackbusch,et al. Tensor product approximation with optimal rank in quantum chemistry. , 2007, The Journal of chemical physics.
[25] Pierre-Antoine Absil,et al. Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..
[26] Morten Mørup. Analysis of Brain Data - Using Multi-Way Array Models on the EEG , 2005 .
[27] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[28] Pierre Comon,et al. Tensor Decompositions, State of the Art and Applications , 2002 .
[29] Rasmus Bro,et al. MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .
[30] Nikos D. Sidiropoulos,et al. Robust iterative fitting of multilinear models , 2005, IEEE Transactions on Signal Processing.
[31] J. Leeuw,et al. Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .
[32] R. Suganya,et al. Data Mining Concepts and Techniques , 2010 .
[33] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[34] Gene H. Golub,et al. Genericity And Rank Deficiency Of High Order Symmetric Tensors , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
[35] Adi Ben-Israel. A volume associated with m x n matrices , 1992 .
[36] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[37] M. J. D. Powell,et al. On search directions for minimization algorithms , 1973, Math. Program..
[38] P. Absil,et al. Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation , 2004 .
[39] Mats Viberg,et al. Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..
[40] Lars Eldén,et al. Numerical linear algebra in data mining , 2006, Acta Numerica.
[41] T. Kolda. Multilinear operators for higher-order decompositions , 2006 .
[42] M. SIAMJ.. A COUNTEREXAMPLE TO THE POSSIBILITY OF AN EXTENSION OF THE ECKART – YOUNG LOW-RANK APPROXIMATION THEOREM FOR THE ORTHOGONAL RANK TENSOR DECOMPOSITION , 2003 .
[43] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[44] Berkant Savas,et al. Rank reduction and volume minimization approach to state-space subspace system identification , 2006, Signal Process..
[45] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[46] Ian Foster,et al. The Grid: A New Infrastructure for 21st Century Science , 2002 .
[47] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[48] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[49] Amy Nicole Langville,et al. Google's PageRank and beyond - the science of search engine rankings , 2006 .
[50] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[51] Heikki Mannila,et al. Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.
[52] Petre Stoica,et al. Maximum likelihood parameter and rank estimation in reduced-rank multivariate linear regressions , 1996, IEEE Trans. Signal Process..
[53] Tamara G. Kolda,et al. Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .
[54] Berkant Savas,et al. A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor , 2009, SIAM J. Matrix Anal. Appl..
[55] Tamara G. Kolda,et al. Higher-order Web link analysis using multilinear algebra , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).
[56] Berkant Savas,et al. Dimensionality reduction and volume minimization - generalization of the determinant minimization criterion for reduced rank regression problems , 2006 .
[57] Lennart Simonsson. Subspace Computations via Matrix Decompositions and Geometric Optimization , 2006 .
[58] Nikos D. Sidiropoulos,et al. Blind spatial signature estimation via time-varying user power loading and parallel factor analysis , 2005, IEEE Transactions on Signal Processing.
[59] Joos Vandewalle,et al. A Grassmann-Rayleigh Quotient Iteration for Dimensionality Reduction in ICA , 2004, ICA.
[60] H. Kiers. Towards a standardized notation and terminology in multiway analysis , 2000 .
[61] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[62] Richard A. Harshman,et al. An index formalism that generalizes the capabilities of matrix notation and algebra to n‐way arrays , 2001 .
[63] B. Khoromskij,et al. Low rank Tucker-type tensor approximation to classical potentials , 2007 .
[64] Lars Kai Hansen,et al. Parallel Factor Analysis as an exploratory tool for wavelet transformed event-related EEG , 2006, NeuroImage.
[65] Berkant Savas,et al. Handwritten digit classification using higher order singular value decomposition , 2007, Pattern Recognit..
[66] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[67] Axel Ruhe,et al. Algorithms for separable nonlinear least squares problems , 1980 .
[68] Fei Wang,et al. Z-eigenvalue methods for a global polynomial optimization problem , 2009, Math. Program..
[69] Bing Liu,et al. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data , 2006, Data-Centric Systems and Applications.
[70] Bülent Yener,et al. Unsupervised Multiway Data Analysis: A Literature Survey , 2009, IEEE Transactions on Knowledge and Data Engineering.
[71] Berkant Savas,et al. The maximum likelihood estimate in reduced-rank regression , 2005, Numer. Linear Algebra Appl..
[72] Gene H. Golub,et al. Matrix computations , 1983 .
[73] Liqun Qi,et al. Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines , 2006, J. Symb. Comput..
[74] Anja Vogler,et al. An Introduction to Multivariate Statistical Analysis , 2004 .
[75] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[76] T. W. Anderson. Canonical correlation analysis and reduced rank regression in autoregressive models , 2002 .
[77] Pieter M. Kroonenberg,et al. Three-mode principal component analysis : theory and applications , 1983 .
[78] N. Sidiropoulos,et al. On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .
[79] David E. Booth,et al. Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.
[80] C Kamath. Proceedings: Fourth Workshop on Mining Scientific Datasets , 2001 .
[81] Jorge Nocedal,et al. Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..
[82] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[83] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..