Algorithms in data mining using matrix and tensor methods

In many fields of science, engineering, and economics large amounts of data are stored and there is a need to analyze these data in order to extract information for various purposes. Data mining is ...

[1]  L. Lathauwer,et al.  Dimensionality reduction for higher-order tensors: algorithms and applications , 2008 .

[2]  Berkant Savas Analyses and Tests of Handwritten Digit Recognition Algorithms , 2004 .

[3]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[4]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[5]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[6]  Demetri Terzopoulos,et al.  Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[7]  Bo Wahlberg,et al.  A linear regression approach to state-space subspace system identification , 1996, Signal Process..

[8]  Tamara G. Kolda,et al.  Efficient MATLAB Computations with Sparse and Factored Tensors , 2007, SIAM J. Sci. Comput..

[9]  Lars Elden,et al.  Matrix methods in data mining and pattern recognition , 2007, Fundamentals of algorithms.

[10]  D. Gabay Minimizing a differentiable function over a differential manifold , 1982 .

[11]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[12]  Tamara G. Kolda,et al.  Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..

[13]  Lawrence B. Holder,et al.  Mining Graph Data , 2006 .

[14]  L. Lathauwer,et al.  On the Best Rank-1 and Rank-( , 2004 .

[15]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[16]  M. Alex O. Vasilescu Multilinear independent component analysis , 2004 .

[17]  G. Golub,et al.  A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies , 2007, Proceedings of the National Academy of Sciences.

[18]  Berkant Savas,et al.  Best multilinear rank approximation of tensors with quasi-Newton methods on Grassmannians , 2008 .

[19]  L. Lathauwer,et al.  Signal Processing based on Multilinear Algebra , 1997 .

[20]  Kurt Stockinger,et al.  Multi-dimensional bitmap indices for optimising data access within object oriented databases at CERN , 2001 .

[21]  T. Kollo,et al.  Advanced Multivariate Statistics with Matrices , 2005 .

[22]  F. L. Hitchcock Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .

[23]  D. Botstein,et al.  Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Wolfgang Hackbusch,et al.  Tensor product approximation with optimal rank in quantum chemistry. , 2007, The Journal of chemical physics.

[25]  Pierre-Antoine Absil,et al.  Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..

[26]  Morten Mørup Analysis of Brain Data - Using Multi-Way Array Models on the EEG , 2005 .

[27]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[28]  Pierre Comon,et al.  Tensor Decompositions, State of the Art and Applications , 2002 .

[29]  Rasmus Bro,et al.  MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .

[30]  Nikos D. Sidiropoulos,et al.  Robust iterative fitting of multilinear models , 2005, IEEE Transactions on Signal Processing.

[31]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[32]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[33]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[34]  Gene H. Golub,et al.  Genericity And Rank Deficiency Of High Order Symmetric Tensors , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[35]  Adi Ben-Israel A volume associated with m x n matrices , 1992 .

[36]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[37]  M. J. D. Powell,et al.  On search directions for minimization algorithms , 1973, Math. Program..

[38]  P. Absil,et al.  Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation , 2004 .

[39]  Mats Viberg,et al.  Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..

[40]  Lars Eldén,et al.  Numerical linear algebra in data mining , 2006, Acta Numerica.

[41]  T. Kolda Multilinear operators for higher-order decompositions , 2006 .

[42]  M. SIAMJ. A COUNTEREXAMPLE TO THE POSSIBILITY OF AN EXTENSION OF THE ECKART – YOUNG LOW-RANK APPROXIMATION THEOREM FOR THE ORTHOGONAL RANK TENSOR DECOMPOSITION , 2003 .

[43]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[44]  Berkant Savas,et al.  Rank reduction and volume minimization approach to state-space subspace system identification , 2006, Signal Process..

[45]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[46]  Ian Foster,et al.  The Grid: A New Infrastructure for 21st Century Science , 2002 .

[47]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[48]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[49]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[50]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[51]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[52]  Petre Stoica,et al.  Maximum likelihood parameter and rank estimation in reduced-rank multivariate linear regressions , 1996, IEEE Trans. Signal Process..

[53]  Tamara G. Kolda,et al.  Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .

[54]  Berkant Savas,et al.  A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor , 2009, SIAM J. Matrix Anal. Appl..

[55]  Tamara G. Kolda,et al.  Higher-order Web link analysis using multilinear algebra , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[56]  Berkant Savas,et al.  Dimensionality reduction and volume minimization - generalization of the determinant minimization criterion for reduced rank regression problems , 2006 .

[57]  Lennart Simonsson Subspace Computations via Matrix Decompositions and Geometric Optimization , 2006 .

[58]  Nikos D. Sidiropoulos,et al.  Blind spatial signature estimation via time-varying user power loading and parallel factor analysis , 2005, IEEE Transactions on Signal Processing.

[59]  Joos Vandewalle,et al.  A Grassmann-Rayleigh Quotient Iteration for Dimensionality Reduction in ICA , 2004, ICA.

[60]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[61]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[62]  Richard A. Harshman,et al.  An index formalism that generalizes the capabilities of matrix notation and algebra to n‐way arrays , 2001 .

[63]  B. Khoromskij,et al.  Low rank Tucker-type tensor approximation to classical potentials , 2007 .

[64]  Lars Kai Hansen,et al.  Parallel Factor Analysis as an exploratory tool for wavelet transformed event-related EEG , 2006, NeuroImage.

[65]  Berkant Savas,et al.  Handwritten digit classification using higher order singular value decomposition , 2007, Pattern Recognit..

[66]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[67]  Axel Ruhe,et al.  Algorithms for separable nonlinear least squares problems , 1980 .

[68]  Fei Wang,et al.  Z-eigenvalue methods for a global polynomial optimization problem , 2009, Math. Program..

[69]  Bing Liu,et al.  Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data , 2006, Data-Centric Systems and Applications.

[70]  Bülent Yener,et al.  Unsupervised Multiway Data Analysis: A Literature Survey , 2009, IEEE Transactions on Knowledge and Data Engineering.

[71]  Berkant Savas,et al.  The maximum likelihood estimate in reduced-rank regression , 2005, Numer. Linear Algebra Appl..

[72]  Gene H. Golub,et al.  Matrix computations , 1983 .

[73]  Liqun Qi,et al.  Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines , 2006, J. Symb. Comput..

[74]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[75]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[76]  T. W. Anderson Canonical correlation analysis and reduced rank regression in autoregressive models , 2002 .

[77]  Pieter M. Kroonenberg,et al.  Three-mode principal component analysis : theory and applications , 1983 .

[78]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[79]  David E. Booth,et al.  Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.

[80]  C Kamath Proceedings: Fourth Workshop on Mining Scientific Datasets , 2001 .

[81]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[82]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[83]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..