First stage of LISA data processing: Clock synchronization and arm-length determination via a hybrid-extended Kalman filter

In this paper, we describe a hybrid-extended Kalman filter algorithm to synchronize the clocks and to precisely determine the inter-spacecraft distances for space-based gravitational wave detectors, such as (e)LISA. According to the simulation, the algorithm has significantly improved the ranging accuracy and synchronized the clocks, making the phase-meter raw measurements qualified for time- delay interferometry algorithms.

[1]  Massimo Tinto,et al.  Time-Delay Interferometry , 2003, Living reviews in relativity.

[2]  K. Danzmann,et al.  Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments , 2013, 1310.2486.

[3]  K. Danzmann,et al.  TDI and clock noise removal for the split interferometry configuration of LISA , 2012 .

[4]  Z. Sodnik,et al.  NGO assessment study report (Yellow Book) , 2012 .

[5]  Yan Wang,et al.  Auxiliary functions of the LISA laser link: ranging, clock noise transfer and data communication , 2011 .

[6]  Kirk McKenzie,et al.  Laser ranging and communications for LISA. , 2010, Optics express.

[7]  Kirk McKenzie,et al.  Experimental demonstration of time-delay interferometry for the laser interferometer space antenna. , 2010, Physical review letters.

[8]  K. Danzmann,et al.  Ranging and phase measurement for LISA , 2010 .

[9]  Karsten Danzmann,et al.  Optical ranging and data transfer development for LISA , 2009 .

[10]  Karsten Danzmann,et al.  EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA , 2009 .

[11]  A. Petiteau,et al.  LISACode: A scientific simulator of LISA , 2008, 0802.2023.

[12]  Report on the second Mock LISA Data Challenge , 2007, 0711.2667.

[13]  Daniel A. Shaddock,et al.  Overview of the LISA Phasemeter , 2006 .

[14]  John B. Moore,et al.  Optimal State Estimation , 2006 .

[15]  T. Regimbau,et al.  Relativistic analysis of the LISA long range optical links , 2005, gr-qc/0511157.

[16]  Paul McNamara,et al.  Weak-light phase locking for LISA , 2005 .

[17]  Massimo Tinto,et al.  Time delay interferometry , 2003, Living Reviews in Relativity.

[18]  M. Vallisneri Synthetic LISA: Simulating time delay interferometry in a model LISA , 2004, gr-qc/0407102.

[19]  Robert Eliot Spero,et al.  Postprocessed time-delay interferometry for LISA , 2004, gr-qc/0406106.

[20]  C. D. Hoyle,et al.  Current error estimates for LISA spurious accelerations , 2004 .

[21]  L. Carbone,et al.  Achieving geodetic motion for LISA test masses: ground testing results. , 2003, Physical review letters.

[22]  N. Cornish,et al.  The effects of orbital motion on LISA time delay interferometry , 2003, gr-qc/0306096.

[23]  Karsten Danzmann,et al.  LISA technology - concept, status, prospects , 2003 .

[24]  Peter L. Bender LISA sensitivity below 0.1 mHz , 2003 .

[25]  Daniel A. Shaddock,et al.  Implementation of time-delay interferometry for LISA , 2003, gr-qc/0303013.

[26]  S. Larson,et al.  The LISA optimal sensitivity , 2002, gr-qc/0209039.

[27]  Bernard F. Schutz,et al.  The GEO 600 gravitational wave detector , 2002 .

[28]  J. Armstrong,et al.  Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .

[29]  William M. Folkner,et al.  LISA orbit selection and stability , 1997 .

[30]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[31]  B. Hofmann-Wellenhof,et al.  Global Positioning System , 1992 .