Robust control of atomic force microscopy

The atomic force microscope (AFM) is an instrument used for acquiring images at nanometer scale. Obtaining better image quality at higher scan speed is a research area of great interest in the control of an AFM. Improving the dynamic response of the scanning probe in the vertical direction and the dynamic response of the scanning motion in the lateral plane are the two major areas of application of advanced control methods to an AFM. The uncertainties inherent in the models of AFM vertical and lateral direction motion stages dictates the application of robust control methods. In this chapter, robust control methods are applied to AFM, treating first the vertical direction and then the lateral plane.

[1]  Cagatay Basdogan,et al.  Adaptive Q control for tapping-mode nanoscanning using a piezoactuated bimorph probe. , 2007, The Review of scientific instruments.

[2]  Bilin Aksun Güvenç,et al.  Robust MIMO disturbance observer analysis and design with application to active car steering , 2010 .

[3]  H. Fujimoto,et al.  Nanoscale servo control of contact-mode AFM with surface topography learning observer , 2008, 2008 10th IEEE International Workshop on Advanced Motion Control.

[4]  F. Allgöwer,et al.  A new control strategy for high-speed atomic force microscopy , 2003 .

[5]  F. Allgöwer,et al.  High performance feedback for fast scanning atomic force microscopes , 2001 .

[6]  S. O. Reza Moheimani,et al.  Reducing Cross-Coupling in a Compliant XY Nanopositioner for Fast and Accurate Raster Scanning , 2010, IEEE Transactions on Control Systems Technology.

[7]  Karl Johan Åström,et al.  Design and Modeling of a High-Speed AFM-Scanner , 2007, IEEE Transactions on Control Systems Technology.

[8]  H. Fujimoto,et al.  Contact-mode AFM control with modified surface topography learning observer and PTC , 2008, 2008 34th Annual Conference of IEEE Industrial Electronics.

[9]  Srinivasa M. Salapaka,et al.  A robust control based solution to the sample‐profile estimation problem in fast atomic force microscopy , 2005 .

[10]  K. Srinivasan,et al.  Analysis and Design of Repetitive Control Systems using the Regeneration Spectrum , 1990, 1990 American Control Conference.

[11]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[12]  Bilin Aksun Güvenç,et al.  Robust Repetitive Controller Design in Parameter Space , 2006 .

[13]  L.Y. Pao,et al.  A Tutorial on the Mechanisms, Dynamics, and Control of Atomic Force Microscopes , 2007, 2007 American Control Conference.

[14]  L.Y. Pao,et al.  Combined Feedforward/Feedback Control of Atomic Force Microscopes , 2007, 2007 American Control Conference.

[15]  Levent Guvenç,et al.  Parameter Space Design of Repetitive Controllers for Satisfying a Robust Performance Requirement , 2010, IEEE Transactions on Automatic Control.

[16]  Murti V. Salapaka,et al.  High bandwidth nano-positioner: A robust control approach , 2002 .

[17]  K. Youcef-Toumi,et al.  Dynamics and control of piezotube actuators for subnanometer precision applications , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[18]  S. Hara,et al.  Repetitive control system: a new type servo system for periodic exogenous signals , 1988 .

[19]  G. Weiss,et al.  Repetitive Control Systems: Old and New Ideas , 1997 .

[20]  Qingze Zou,et al.  Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed AFM operation , 2005, IEEE Transactions on Control Systems Technology.

[21]  S O Reza Moheimani,et al.  Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges. , 2008, The Review of scientific instruments.

[22]  Yang Li,et al.  Feedforward control of a piezoelectric flexure stage for AFM , 2008, 2008 American Control Conference.

[23]  Qingze Zou,et al.  Control of dynamics-coupling effects in piezo-actuator for high-speed AFM operation , 2004, Proceedings of the 2004 American Control Conference.

[24]  S.O.R. Moheimani,et al.  PPF Control of a Piezoelectric Tube Scanner , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[25]  Murti V. Salapaka,et al.  Piezoelectric scanners for atomic force microscopes: design of lateral sensors, identification and control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[26]  K. Youcef-Toumi,et al.  Coupling in piezoelectric tube scanners used in scanning probe microscopes , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[27]  Chibum Lee,et al.  Fast Robust Nanopositioning—A Linear-Matrix-Inequalities-Based Optimal Control Approach , 2009, IEEE/ASME Transactions on Mechatronics.

[28]  Srinivasa M. Salapaka,et al.  Robust MIMO control of a parallel kinematics nano-positioner for high resolution high bandwidth tracking and repetitive tasks , 2007, 2007 46th IEEE Conference on Decision and Control.

[29]  Todd Sulchek,et al.  Characterization and optimization of scan speed for tapping-mode atomic force microscopy , 2002 .

[30]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[31]  C Basdogan,et al.  Numerical simulation of nano scanning in intermittent-contact mode AFM under Q control , 2008, Nanotechnology.