Pairings on Hyperelliptic Curves with a Real Model

We analyse the efficiency of pairing computations on hyperelliptic curves given by a real model using a balanced divisor at infinity. Several optimisations are proposed and analysed. Genus two curves given by a real model arise when considering pairing friendly groups of order dividing p2i¾? p+ 1. We compare the performance of pairings on such groups in both elliptic and hyperelliptic versions. We conclude that pairings can be efficiently computable in real models of hyperelliptic curves.

[1]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[2]  G. Frey,et al.  A remark concerning m -divisibility and the discrete logarithm in the divisor class group of curves , 1994 .

[3]  Paulo S. L. M. Barreto,et al.  Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.

[4]  Arjen K. Lenstra,et al.  The XTR Public Key System , 2000, CRYPTO.

[5]  Frederik Vercauteren,et al.  The Eta Pairing Revisited , 2006, IEEE Transactions on Information Theory.

[6]  LeiHu,et al.  Implementation of Cryptosystems Based on Tate Pairing , 2005 .

[7]  Frederik Vercauteren,et al.  Ate Pairing on Hyperelliptic Curves , 2007, EUROCRYPT.

[8]  Martijn Stam,et al.  On Small Characteristic Algebraic Tori in Pairing-Based Cryptography , 2004, IACR Cryptol. ePrint Arch..

[9]  Andreas Stein,et al.  Explicit Formulas for Real Hyperelliptic Curves of Genus 2 in Affine Representation , 2007, WAIFI.

[10]  Ricardo Dahab,et al.  Multiplication and Squaring on Pairing-Friendly Fields , 2006, IACR Cryptol. ePrint Arch..

[11]  Steven D. Galbraith,et al.  Distortion maps for genus two curves , 2006, IACR Cryptol. ePrint Arch..

[12]  Sachar Paulus,et al.  Real and imaginary quadratic representations of hyperelliptic function fields , 1999, Math. Comput..

[13]  Alice Silverberg,et al.  Torus-Based Cryptography , 2003, CRYPTO.

[14]  Michael Scott,et al.  Pairing Calculation on Supersingular Genus 2 Curves , 2006, Selected Areas in Cryptography.

[15]  Steven D. Galbraith,et al.  Efficient Hyperelliptic Arithmetic Using Balanced Representation for Divisors , 2008, ANTS.

[16]  Hyang-Sook Lee,et al.  Efficient and Generalized Pairing Computation on Abelian Varieties , 2009, IEEE Transactions on Information Theory.

[17]  Eric R. Verheul,et al.  Evidence that XTR Is More Secure than Supersingular Elliptic Curve Cryptosystems , 2001, Journal of Cryptology.

[18]  Eric R. Verheul,et al.  An Analysis of the Vector Decomposition Problem , 2008, Public Key Cryptography.