Conditional and interaction gene-set analysis reveals novel functional pathways for blood pressure

[1]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[2]  P. Elliott,et al.  New Blood Pressure–Associated Loci Identified in Meta-Analyses of 475 000 Individuals , 2017, Circulation. Cardiovascular genetics.

[3]  Gad Abraham,et al.  FlashPCA2: principal component analysis of biobank-scale genotype datasets , 2016, bioRxiv.

[4]  He Gao,et al.  Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk , 2017, Nature Genetics.

[5]  Ian M. Fingerman,et al.  Database resources of the National Center for Biotechnology Information , 2010, Nucleic Acids Res..

[6]  N. Risch,et al.  Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation , 2016, Nature Genetics.

[7]  Claude Bouchard,et al.  Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci , 2016, Nature Genetics.

[8]  He Zhang,et al.  Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension , 2016, Nature Genetics.

[9]  Xiaofeng Zhu,et al.  The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals , 2016, Nature Genetics.

[10]  T. Heskes,et al.  The statistical properties of gene-set analysis , 2016, Nature Reviews Genetics.

[11]  Wei Liu,et al.  Phenotypic switching of vascular smooth muscle cells in the ‘normal region’ of aorta from atherosclerosis patients is regulated by miR‐145 , 2016, Journal of cellular and molecular medicine.

[12]  M. Gautel,et al.  The sarcomeric cytoskeleton: from molecules to motion , 2016, Journal of Experimental Biology.

[13]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[14]  Tom R. Gaunt,et al.  The UK10K project identifies rare variants in health and disease , 2016 .

[15]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[16]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[17]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[18]  J. Hirschhorn,et al.  Biological interpretation of genome-wide association studies using predicted gene functions , 2015, Nature Communications.

[19]  Juancarlos Chan,et al.  Gene Ontology Consortium: going forward , 2014, Nucleic Acids Res..

[20]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[21]  Simon Jupp,et al.  A new Ontology Lookup Service at EMBL-EBI , 2015, SWAT4LS.

[22]  Ewan Birney,et al.  FORGE: A tool to discover cell specific enrichments of GWAS associated SNPs in regulatory regions , 2014, bioRxiv.

[23]  Harry Hemingway,et al.  Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people , 2014, The Lancet.

[24]  Jelle J. Goeman,et al.  Multiple hypothesis testing in genomics , 2014, Statistics in medicine.

[25]  Gad Abraham,et al.  Fast Principal Component Analysis of Large-Scale Genome-Wide Data , 2014, bioRxiv.

[26]  Andreas Krämer,et al.  Causal analysis approaches in Ingenuity Pathway Analysis , 2013, Bioinform..

[27]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[28]  Shu‐hong Li,et al.  Role of miR-145 in cardiac myofibroblast differentiation. , 2014, Journal of molecular and cellular cardiology.

[29]  P. Chambon,et al.  Direct Regulation of Blood Pressure by Smooth Muscle Cell Mineralocorticoid Receptors , 2012, Nature Medicine.

[30]  Colm O'Dushlaine,et al.  INRICH: interval-based enrichment analysis for genome-wide association studies , 2012, Bioinform..

[31]  Achilleas S. Frangakis,et al.  Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs , 2012, Nature Cell Biology.

[32]  Christian Gieger,et al.  Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure , 2011, Nature Genetics.

[33]  Z. Massy,et al.  miR-143 and miR-145: molecular keys to switch the phenotype of vascular smooth muscle cells. , 2011, Circulation. Cardiovascular genetics.

[34]  R. Touyz,et al.  Reactive oxygen species and vascular biology: implications in human hypertension , 2011, Hypertension Research.

[35]  H. Hakonarson,et al.  Analysing biological pathways in genome-wide association studies , 2010, Nature Reviews Genetics.

[36]  Ayellet V. Segrè,et al.  Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits , 2010, PLoS genetics.

[37]  Nilesh J Samani,et al.  Common Variants in Genes Underlying Monogenic Hypertension and Hypotension and Blood Pressure in the General Population , 2008, Hypertension.

[38]  G. Yegutkin Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. , 2008, Biochimica et biophysica acta.

[39]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[40]  Daniel Levy,et al.  Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness , 2007, BMC Medical Genetics.

[41]  D. Reich,et al.  Population Structure and Eigenanalysis , 2006, PLoS genetics.

[42]  F. Murad,et al.  Nitric Oxide and Cyclic GMP in Cell Signaling and Drug Development , 2006 .

[43]  W. Vongpatanasin,et al.  Estrogen and hypertension , 2006, Current hypertension reports.

[44]  Martin Paul,et al.  Physiology of local renin-angiotensin systems. , 2006, Physiological reviews.

[45]  F. Murad Shattuck Lecture. Nitric oxide and cyclic GMP in cell signaling and drug development. , 2006, The New England journal of medicine.

[46]  B. Alexander Fetal programming of hypertension. , 2006, American journal of physiology. Regulatory, integrative and comparative physiology.

[47]  Nuala A Sheehan,et al.  Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure , 2005, Statistics in medicine.

[48]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[50]  Kelli Montgomery,et al.  Gene expression in the normal adult human kidney assessed by complementary DNA microarray. , 2003, Molecular biology of the cell.

[51]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[52]  B. Alexander Placental Insufficiency Leads to Development of Hypertension in Growth-Restricted Offspring , 2003, Hypertension.

[53]  G. Burnstock Purinergic Signaling and Vascular Cell Proliferation and Death , 2002, Arteriosclerosis, thrombosis, and vascular biology.

[54]  J. Granger,et al.  Pathophysiology of hypertension during preeclampsia linking placental ischemia with endothelial dysfunction. , 2001, Hypertension.

[55]  A. Hughes,et al.  Calcium channels in vascular smooth muscle cells. , 1995, Journal of vascular research.

[56]  S. Moncada,et al.  Nitric oxide: physiology, pathophysiology, and pharmacology. , 1991, Pharmacological reviews.

[57]  J. Laragh,et al.  Atrial natriuretic peptide: a new factor in hormonal control of blood pressure and electrolyte homeostasis. , 1986, Annual review of medicine.