Exoplanetary Microlensing

Gravitational microlensing occurs when a foreground star h appens to pass very close to our line of sight to a more distant background star. The foreground st ar acts as a lens, splitting the light from the background source star into two images, which are typica lly unresolved. However, these images of the source are also magnified, by an amount that depends on t he angular separation between the lens and source. The relative motion between the lens and sou rce therefore results in a time-variable magnification of the source: a microlensing event. If the for eground star happens to host a planet with projected separation near the paths of these images, the pla n t will also act as a lens, further perturbing the images and resulting in a characteristic, short-lived s ignature of the planet. This chapter provides an introduction to the discovery and characterization of ex oplanets with gravitational microlensing. The theoretical foundation of the method is reviewed, focus ing in particular on the phenomenology of planetary microlensing perturbations. The strengths and w eaknesses of the microlensing technique are discussed, highlighting the fact that it is sensitive to low -mass planetary companions to stars throughout the Galactic disk and foreground bulge, and that its sensiti vity peaks for planet separations just beyond the snow line. An overview of the practice of microlensing plane t s arches is given, with a discussion of some of the challenges with detecting and analyzing planetary pe turbations. The chapter concludes with a review of the results that have been obtained to date, and a di scussion of the near and long-term prospects for microlensing planet surveys. Ultimately, microlensin g is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets e xcept Mercury, as well as to free floating planets, and will provide a crucial test of planet formation theories by determining the demographics of planets throughout the Galaxy.

[1]  M. Dominik Parameter degeneracies and (un)predictability of gravitational microlensing events , 2008, 0811.4173.

[2]  K. Masuda,et al.  MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand , 2008 .

[3]  Penny D. Sackett Searching for Unseen Planets Via Occultation and Microlensing , 1998 .

[4]  E. E. Falco,et al.  The Detectability of Planetary Companions of Compact Galactic Objects from Their Effects on Microlensed Light Curves of Distant Stars , 1994 .

[5]  Gravitational lens under perturbations: symmetry of perturbing potentials with invariant caustics , 2004, astro-ph/0410388.

[6]  P. M. Vreeswijk,et al.  Microlensing Constraints on the Frequency of Jupiter-Mass Companions: Analysis of 5 Years of PLANET Photometry , 2001, astro-ph/0104100.

[7]  Marcin Kubiak,et al.  The Optical Gravitational Lensing Experiment , 1992 .

[8]  A. Gould,et al.  The Mass Spectrum Of Machos From Parallax Measurements , 1994, astro-ph/9409036.

[9]  T. A. Lister,et al.  RoboNet-II: Follow-up observations of microlensing events with a robotic network of telescopes , 2008, 0808.0813.

[10]  Scott J. Kenyon,et al.  Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets , 2007, 0710.1065.

[11]  H. Witt The Effect of the Stellar Size on Microlensing at the Baade Window , 1995 .

[12]  K. Zebrun,et al.  OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event , 2004 .

[13]  C. Snodgrass,et al.  The abundance of Galactic planets from OGLE-III 2002 microlensing data , 2004, astro-ph/0403387.

[14]  OGLE-2005-BLG-071Lb, THE MOST MASSIVE M DWARF PLANETARY COMPANION? , 2008, 0804.1354.

[15]  Andrew Gould,et al.  MACHO Velocities from Satellite-based Parallaxes , 1994 .

[16]  P. Baillon,et al.  POINT-AGAPE pixel lensing survey of M31: Evidence for a MACHO contribution to galactic halos , 2005 .

[17]  H. Bondi,et al.  The Gravitational Lens Effect , 1964 .

[18]  Andrew Gould,et al.  Monte Carlo Simulations of MACHO Parallaxes from a Satellite , 1996 .

[19]  R. Di Stefano,et al.  Interpretation of gravitational microlensing by binary systems , 1995 .

[20]  C. H. Ling,et al.  A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192 , 2008, 0806.0025.

[21]  Philip Yock,et al.  On Planetary Companions to the MACHO 98-BLG-35 Microlens Star , 2000 .

[22]  O. Szewczyk,et al.  Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.

[23]  Predicting Stellar Angular Sizes , 1999, astro-ph/9904295.

[24]  Andrew Gould,et al.  Planet Parameters in Microlensing Events , 1996, astro-ph/9610123.

[25]  R. D. Ritis,et al.  Detecting planets around stars in nearby galaxies , 1999, astro-ph/9903285.

[26]  P. Vermaak The effects of resolved sources and blending on the detection of planets via gravitational microlensing , 2000 .

[27]  Bohdan Paczynski,et al.  Gravitational microlensing of the Galactic bulge stars , 1991 .

[28]  Identification of the OGLE-2003-BLG-235/MOA-2003-BLG-53 Planetary Host Star* , 2006, astro-ph/0606038.

[29]  S. Paulin-Henriksson,et al.  A Candidate M31/M32 Intergalactic Microlensing Event , 2002, astro-ph/0206387.

[30]  K. Griest,et al.  Effect of binary sources on the search for massive astrophysical compact halo objects via microlensing , 1992 .

[31]  A. Zakharov On the some properties of gravitational lens equation near cusps , 1999 .

[32]  P. Vermaak Rapid analysis of binary lens gravitational microlensing light curves , 2003 .

[33]  MEASURING THE REMNANT MASS FUNCTION OF THE GALACTIC BULGE , 1999, astro-ph/9906472.

[34]  Gregory Laughlin,et al.  The Core Accretion Model Predicts Few Jovian-Mass Planets Orbiting Red Dwarfs , 2004, astro-ph/0407309.

[35]  B. Gaudi,et al.  Gravitational Microlensing near Caustics. II. Cusps , 2002, astro-ph/0206162.

[36]  A. Gould,et al.  MICROLENSING EVENTS : THIN DISK, THICK DISK, OR HALO ? , 1994 .

[37]  David P. Bennett,et al.  Simulation of a Space-based Microlensing Survey for Terrestrial Extrasolar Planets , 2002 .

[38]  S. Mao,et al.  Can lensed stars be regarded as pointlike for microlensing by MACHOs , 1994 .

[39]  Cheongho Han,et al.  On the Feasibility of Detecting Satellites of Extrasolar Planets via Microlensing , 2002, astro-ph/0207372.

[40]  A. Einstein LENS-LIKE ACTION OF A STAR BY THE DEVIATION OF LIGHT IN THE GRAVITATIONAL FIELD. , 1936, Science.

[41]  Planetary microlensing at high magnification , 2002, astro-ph/0204478.

[42]  D. Holz,et al.  Photon Statistics Limits for Earth-Based Parallax Measurements of MACHO Events , 1995, astro-ph/9503039.

[43]  IM,et al.  THE USE OF HIGH-MAGNIFICATION MICROLENSING EVENTS IN DISCOVERING EXTRASOLAR PLANETS , 1998 .

[44]  Dmitry Khavinson,et al.  On the number of zeros of certain rational harmonic functions , 2004, math/0401188.

[45]  J. Beaulieu,et al.  Galactic Bulge microlensing optical depth from EROS-2 , 2006, astro-ph/0601510.

[46]  The Many Possible Interpretations of Microlensing Event OGLE 2002-BLG-055 , 2004, astro-ph/0402417.

[47]  High-Precision Limb-Darkening Measurement of a K3 Giant Using Microlensing , 2003, astro-ph/0303638.

[48]  Byeong-Gon Park,et al.  Microlensing Sensitivity to Earth-Mass Planets in the Habitable Zone , 2006, astro-ph/0602006.

[49]  M. Dominik,et al.  The relative lens-source proper motion in MACHO 98-SMC-1 , 1998, astro-ph/9807086.

[50]  Jennifer A. Johnson,et al.  A High-Resolution Spectrum of the Highly Magnified Bulge G Dwarf MOA-2006-BLG-099S , 2008, 0801.2159.

[51]  P. Wozniak,et al.  Microlensing of Blended Stellar Images , 1997, astro-ph/9702194.

[52]  Andrew Gould,et al.  Proper Motions of MACHOs , 1994 .

[53]  J. Beaulieu,et al.  Observation of microlensing toward the galactic spiral arms. EROS II 3 year survey , 2001 .

[54]  B. Gaudi,et al.  A Characteristic Planetary Feature in Double-Peaked, High-Magnification Microlensing Events , 2008, 0805.1103.

[55]  Bohdan Paczynski,et al.  The Optical Gravitational Lensing Experiment. The Early Warning System: Real Time Microlensing , 1994 .

[56]  K. Ulaczyk,et al.  Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common , 2006 .

[57]  S. Kenyon,et al.  Planet formation around M-dwarfs: the moving snow line and super-Earths , 2007 .

[58]  K. Ulaczyk,et al.  A Jovian-Mass Planet in Microlensing Event OGLE-2005-BLG-071 , 2005 .

[59]  K. Ulaczyk,et al.  First Space-Based Microlens Parallax Measurement: Spitzer Observations of OGLE-2005-SMC-001 , 2007, astro-ph/0702240.

[60]  S Ida,et al.  Toward a Deterministic Model of Planetary Formation. III. Mass Distribution of Short-Period Planets around Stars of Various Masses , 2005 .

[61]  S. Mao,et al.  On the Minimum Magnification between Caustic Crossings for Microlensing by Binary and Multiple Stars , 1995 .

[62]  Bohdan Paczynski,et al.  The optical gravitational lensing experiment. Discovery of the first candidate microlensing event in the direction of the Galactic Bulge , 1993 .

[63]  Origins of Eccentric Extrasolar Planets: Testing the Planet-Planet Scattering Model , 2007, astro-ph/0703163.

[64]  B. Gaudi,et al.  Microlensing by Multiple Planets in High-Magnification Events , 1998, astro-ph/9803282.

[65]  A. J. Drake,et al.  The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations , 2000, astro-ph/0001272.

[66]  N. Palanque-Delabrouille,et al.  Microlensing towards the Small Magellanic Cloud. EROS 2 first year survey , 1997 .

[67]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[68]  S. Peale Probability of Detecting a Planetary Companion during a Microlensing Event , 2001, astro-ph/0101316.

[69]  Andrew Gould,et al.  Discovering Planetary Systems through Gravitational Microlenses , 1992 .

[70]  K. Masuda,et al.  Microlensing Optical Depth toward the Galactic Bulge from Microlensing Observations in Astrophysics Group Observations during 2000 with Difference Image Analysis , 2002, astro-ph/0207604.

[71]  A. Gould Hexadecapole Approximation in Planetary Microlensing , 2008, 0801.2578.

[72]  Mark A. Walker,et al.  Parallax effects in binary microlensing events , 1995 .

[73]  Michael E. Eyler,et al.  Discovery of a Very Bright, Nearby Gravitational Microlensing Event , 2007, astro-ph/0703125.

[74]  A. Gal-Yam,et al.  OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens , 2003, astro-ph/0309302.

[75]  K. Cook,et al.  Submitted to The Astrophysical Journal Letters Detection of Lithium in a Main Sequence Bulge Star Using Keck I as a 15m Diameter Telescope , 1997 .

[76]  S. Mao Gravitational microlensing by a single star plus external shear , 1992 .

[77]  Detectability of extrasolar moons as gravitational microlenses , 2009, 0912.2076.

[78]  H. Witt Investigation of high amplification events in light curves of gravitationally lensed quasars. , 1990 .

[79]  O. Pejcha,et al.  EXTENDED-SOURCE EFFECT AND CHROMATICITY IN TWO-POINT-MASS MICROLENSING , 2007, 0712.2217.

[80]  A. Udalski The Optical Gravitational Lensing Experiment . Real Time Data Analysis Systems in the OGLE-III Survey , 2004 .

[81]  J. Stachel,et al.  The Origin of Gravitational Lensing: A Postscript to Einstein's 1936 Science Paper , 1997, Science.

[82]  P. Jetzer Gravitational Microlensing , 1999, Naturwissenschaften.

[83]  A. Cassan An alternative parameterisation for binary-lens caustic-crossing events , 2008, 0808.1527.

[84]  A. Gould Resolution of the MACHO-LMC-5 Puzzle: The Jerk-Parallax Microlens Degeneracy , 2003, astro-ph/0311548.

[85]  B. Gaudi,et al.  Gravitational Microlensing near Caustics. I. Folds , 2001, astro-ph/0112531.

[86]  University of Chicago,et al.  A new channel for the detection of planetary systems through microlensing , 1997, astro-ph/9711013.

[87]  P. Jetzer,et al.  Pixel lensing as a way to detect extrasolar planets in M31 , 2009, 0906.1050.

[88]  S. Refsdal,et al.  On the Possibility of Determining the Distances and Masses of Stars from the Gravitational Lens Effect , 1966 .

[89]  T. Sauer Nova Geminorum 1912 and the origin of the idea of gravitational lensing , 2007, 0704.0963.

[90]  R. D. Stefano,et al.  Discovery and Study of Nearby Habitable Planets with Mesolensing , 2008, 0801.1510.

[91]  B. Paczyński,et al.  Acceleration and parallax effects in gravitational microlensing , 2002, astro-ph/0210370.

[92]  B. Scott Gaudi,et al.  Distinguishing Between Binary-Source and Planetary Microlensing Perturbations , 1998 .

[93]  P. J. Quinn,et al.  Possible gravitational microlensing of a star in the Large Magellanic Cloud , 1993, Nature.

[94]  On the Location of the Snow Line in a Protoplanetary Disk , 2006, astro-ph/0602217.

[95]  Sun Hong Rhie n-point Gravitational Lenses with 5(n-1) Images , 2003 .

[96]  Jack J. Lissauer,et al.  Timescales for planetary accretion and the structure of the protoplanetary disk , 1986 .

[97]  Combined Analysis of the Binary Lens Caustic-crossing Event MACHO 98-SMC-1 , 1999, astro-ph/9907247.

[98]  A. Gould,et al.  Stokes's Theorem Applied to Microlensing of Finite Sources , 1997 .

[99]  Bohdan Paczynski,et al.  Gravitational Microlensing in the Local Group , 1996 .

[100]  David P. Bennett,et al.  Detecting Earth-Mass Planets with Gravitational Microlensing , 1996, astro-ph/9603158.

[101]  Cheongho Han,et al.  Properties of Planetary Caustics in Gravitational Microlensing , 2005, astro-ph/0510206.

[102]  A. J. Drake,et al.  Galactic Bulge Microlensing Events from the MACHO Collaboration , 2004, astro-ph/0410341.

[103]  M. J. Lehner,et al.  First Detection of a Gravitational Microlensing Candidate toward the Small Magellanic Cloud , 1997, astro-ph/9708190.

[104]  Introduction to Gravitational Microlensing , 2008, 0811.0441.

[105]  A. Gould MICROLENSING AND THE STELLAR MASS FUNCTION , 1996, astro-ph/9604014.

[106]  C. H. Ling,et al.  MICROLENSING EVENT MOA-2007-BLG-400: EXHUMING THE BURIED SIGNATURE OF A COOL, JOVIAN-MASS PLANET , 2008, 0809.2997.

[107]  Theory and practice of microlensing light curves around fold singularities , 2003, astro-ph/0309581.

[108]  K. Ulaczyk,et al.  MASSES AND ORBITAL CONSTRAINTS FOR THE OGLE-2006-BLG-109Lb,c JUPITER/SATURN ANALOG PLANETARY SYSTEM , 2009, 0911.2706.

[109]  M. Dominik The binary gravitational lens and its extreme cases , 1999, astro-ph/9903014.

[110]  R. D. Stefano MESOLENSING EXPLORATIONS OF NEARBY MASSES : FROM PLANETS TO BLACK HOLES , 2007, 0712.3558.

[111]  P. Schneider,et al.  The gravitational lens equation near cusps , 1992 .

[112]  S. Refsdal,et al.  Flux variations of QSO 0957 + 561 A, B and image splitting by stars near the light path , 1979, Nature.

[113]  S. Refsdal,et al.  Star disturbances in gravitational lens galaxies , 1984 .

[114]  P. Schneider,et al.  The two-point-mass lens: detailed investigation of a special asymmetric gravitational lens , 1986 .

[115]  R. Webster,et al.  Investigating the geometry of quasars with microlensing , 1999 .

[116]  A. Gould,et al.  Astrometric Resolution of Severely Degenerate Binary Microlensing Events , 2000, astro-ph/0001193.

[117]  M. Dominik Revealing stellar brightness profiles by means of microlensing fold caustics , 2004, astro-ph/0402564.

[118]  J. Beaulieu,et al.  Limb Darkening of a K Giant in the Galactic Bulge: PLANET Photometry of MACHO 97-BLG-28 , 1998, astro-ph/9811479.

[119]  Andrew Gould,et al.  Satellite Parallaxes of Lensing Events toward the Galactic Bulge , 1996 .

[120]  V. Bozza Caustics in special multiple lenses , 1999, astro-ph/9910535.

[121]  B. Gaudi,et al.  Planetary Detection Efficiency of the Magnification 3000 Microlensing Event OGLE-2004-BLG-343 , 2005, astro-ph/0507079.

[122]  The Luminosity Function and Initial Mass Function in the Galactic Bulge , 1998, astro-ph/9801321.

[123]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[124]  Andrew Gould MACHO Parallaxes from a Single Satellite , 1995 .

[125]  Andrew Gould,et al.  SYSTEMATIC ANALYSIS OF 22 MICROLENSING PARALLAX CANDIDATES , 2005, astro-ph/0506183.

[126]  R. Sari,et al.  Final Stages of Planet Formation , 2004, astro-ph/0404240.

[127]  S. Rhie Infimum microlensing amplification of the maximum number of images of n-point lens systems , 1995, astro-ph/9508123.

[128]  B. Bromley Finite-Size Gravitational Microlenses , 1996 .

[129]  Bohdan Paczynski,et al.  Gravitational microlensing by double stars and planetary systems , 1991 .

[130]  Stochastic distributions of lens and source properties for observed galactic microlensing events , 2005, astro-ph/0507540.

[131]  C. Alcock Gravitational lenses , 1982, Nature.

[132]  B. Gaudi,et al.  Spectrophotometric Resolution of Stellar Surfaces with Microlensing , 1998, astro-ph/9802205.

[133]  A. Gould,et al.  Stellar Contribution to the Galactic Bulge Microlensing Optical Depth , 2003, astro-ph/0303309.

[134]  Cheongho Han DISTINGUISHING BETWEEN PLANETARY AND BINARY INTERPRETATIONS OF MICROLENSING CENTRAL PERTURBATIONS UNDER THE SEVERE FINITE-SOURCE EFFECT , 2008, 0812.1591.

[135]  F. Thevenin,et al.  The angular sizes of dwarf stars and subgiants Surface brightness relations calibrated by interferometry , 2004, astro-ph/0404180.

[136]  Rosanne Di Stefano Microlensing and the Search for Extraterrestrial Life , 1999 .

[137]  A. Gould Microlens Parallaxes with SIRTF , 1998, astro-ph/9807247.

[138]  Joachim Wambsganss Discovering Galactic planets by gravitational microlensing: magnification patterns and light curves , 1997 .

[139]  Shigeru Ida,et al.  Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities , 2004, astro-ph/0408019.

[140]  Rosanne Di Stefano,et al.  A New Channel for the Detection of Planetary Systems through Microlensing. I. Isolated Events due to Planet Lenses , 1999 .

[141]  B. Monard,et al.  A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: Cold neptunes are common , 2009, 0912.1171.

[142]  John C. Geary,et al.  The Kepler mission: a wide-field-of-view photometer designed to determine the frequency of Earth-size planets around solar-like stars , 2003, SPIE Astronomical Telescopes + Instrumentation.