An analysis of the impact of subsampling on the neural network error surface

[1]  M. Hasenjäger,et al.  Active learning in neural networks , 2002 .

[2]  Shu-Tao Xia,et al.  Back-propagation neural network on Markov chains from system call sequences: a new approach for detecting Android malware with system call sequences , 2017, IET Inf. Secur..

[3]  Andries Petrus Engelbrecht,et al.  Training feedforward neural networks with dynamic particle swarm optimisation , 2012, Swarm Intelligence.

[4]  Phlippie Rudolph Bosman The influence of fitness landscape characteristics on the search behaviour of particle swarm optimisers , 2019 .

[5]  Pascal Kerschke,et al.  Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package Flacco , 2017, Studies in Classification, Data Analysis, and Knowledge Organization.

[6]  Tingting Tang,et al.  The Loss Surface of Deep Linear Networks Viewed Through the Algebraic Geometry Lens , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Bernd Bischl,et al.  Exploratory landscape analysis , 2011, GECCO '11.

[8]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[9]  Sébastien Destercke,et al.  Epistemic Uncertainty Sampling , 2019, DS.

[10]  Derong Liu,et al.  A new learning algorithm for feedforward neural networks , 2001, Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206).

[11]  Anna Sergeevna Bosman Fitness Landscape Analysis of Feed-Forward Neural Networks , 2019 .

[12]  Andries Petrus Engelbrecht,et al.  Fitness Landscape Analysis of Weight-Elimination Neural Networks , 2017, Neural Processing Letters.

[13]  Edgar A. Bernal,et al.  The Loss Surface of XOR Artificial Neural Networks , 2018, Physical review. E.

[14]  Hao Shen,et al.  Towards a Mathematical Understanding of the Difficulty in Learning with Feedforward Neural Networks , 2016, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[15]  Andries Engelbrecht,et al.  Loss Surface Modality of Feed-Forward Neural Network Architectures , 2019, 2020 International Joint Conference on Neural Networks (IJCNN).

[16]  Hermann Ney,et al.  Cross-entropy vs. squared error training: a theoretical and experimental comparison , 2013, INTERSPEECH.

[17]  Stefano Soatto,et al.  Entropy-SGD: biasing gradient descent into wide valleys , 2016, ICLR.

[18]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[19]  Anna Sergeevna Bosman,et al.  Characterising neutrality in neural network error landscapes , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[20]  Andries Engelbrecht,et al.  On the Robustness of Random Walks for Fitness Landscape Analysis , 2019, 2019 IEEE Symposium Series on Computational Intelligence (SSCI).

[21]  Radu Timofte,et al.  Adversarial Sampling for Active Learning , 2018, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[22]  Heike Trautmann,et al.  Automated Algorithm Selection: Survey and Perspectives , 2018, Evolutionary Computation.

[23]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[24]  Andries Petrus Engelbrecht,et al.  A parameter-free particle swarm optimization algorithm using performance classifiers , 2019, Inf. Sci..

[25]  P. Stadler Fitness Landscapes , 1993 .

[26]  R. Srikant,et al.  Understanding the Loss Surface of Neural Networks for Binary Classification , 2018, ICML.

[27]  Andries Petrus Engelbrecht,et al.  A progressive random walk algorithm for sampling continuous fitness landscapes , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[28]  Jorge Nocedal,et al.  On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima , 2016, ICLR.

[29]  Yann LeCun,et al.  Open Problem: The landscape of the loss surfaces of multilayer networks , 2015, COLT.

[30]  Daniel N. Wilke,et al.  Resolving learning rates adaptively by locating stochastic non-negative associated gradient projection points using line searches , 2020, Journal of Global Optimization.

[31]  Carola Doerr,et al.  Adaptive landscape analysis , 2019, GECCO.

[32]  Andries Petrus Engelbrecht,et al.  Overfitting by PSO trained feedforward neural networks , 2010, IEEE Congress on Evolutionary Computation.

[33]  L. Darrell Whitley,et al.  The dispersion metric and the CMA evolution strategy , 2006, GECCO.

[34]  Sébastien Vérel,et al.  New features for continuous exploratory landscape analysis based on the SOO tree , 2019, FOGA '19.

[35]  Andries Petrus Engelbrecht,et al.  Quantifying ruggedness of continuous landscapes using entropy , 2009, 2009 IEEE Congress on Evolutionary Computation.

[36]  Lin Sun,et al.  Feature selection using neighborhood entropy-based uncertainty measures for gene expression data classification , 2019, Inf. Sci..

[37]  Robert Hecht-Nielsen,et al.  On the Geometry of Feedforward Neural Network Error Surfaces , 1993, Neural Computation.

[38]  Manali Sharma,et al.  Evidence-based uncertainty sampling for active learning , 2016, Data Mining and Knowledge Discovery.

[39]  Yann Dauphin,et al.  Empirical Analysis of the Hessian of Over-Parametrized Neural Networks , 2017, ICLR.

[40]  Ievgen Redko,et al.  Deep Neural Networks Are Congestion Games: From Loss Landscape to Wardrop Equilibrium and Beyond , 2020, AISTATS.

[41]  William A. Gale,et al.  A sequential algorithm for training text classifiers , 1994, SIGIR '94.

[42]  Andries Petrus Engelbrecht,et al.  Steep gradients as a predictor of PSO failure , 2013, GECCO '13 Companion.

[43]  A. H. Chen,et al.  HDPS: Heart disease prediction system , 2011, 2011 Computing in Cardiology.

[44]  Andries Petrus Engelbrecht,et al.  Visualising Basins of Attraction for the Cross-Entropy and the Squared Error Neural Network Loss Functions , 2019, Neurocomputing.

[45]  Andries Petrus Engelbrecht,et al.  Analysis and classification of optimisation benchmark functions and benchmark suites , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[46]  Lawrence D. Jackel,et al.  Large Automatic Learning, Rule Extraction, and Generalization , 1987, Complex Syst..

[47]  Andries Petrus Engelbrecht,et al.  Characterising the searchability of continuous optimisation problems for PSO , 2014, Swarm Intelligence.

[48]  Andries Petrus Engelbrecht,et al.  Ruggedness, funnels and gradients in fitness landscapes and the effect on PSO performance , 2013, 2013 IEEE Congress on Evolutionary Computation.

[49]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[50]  Saman K. Halgamuge,et al.  Quantifying Variable Interactions in Continuous Optimization Problems , 2017, IEEE Transactions on Evolutionary Computation.

[51]  Fred A. Hamprecht,et al.  Essentially No Barriers in Neural Network Energy Landscape , 2018, ICML.

[52]  Erry Yulian Triblas Adesta,et al.  Investigation of the effect of cutting speed on the Surface Roughness parameters in CNC End Milling using Artificial Neural Network , 2013 .

[53]  Andries Petrus Engelbrecht,et al.  Progressive gradient walk for neural network fitness landscape analysis , 2018, GECCO.