Generalised sk-spline interpolation on compact Abelian groups

Abstract The notion of sk-spline is generalised to arbitrary compact Abelian groups. A class of conditionally positive definite kernels on the group is identified, and a subclass corresponding to the generalised sk-spline is used for constructing interpolants, on scattered data, to continuous functions on the group. The special case of d -dimensional torus is considered and convergence rates are proved when the kernel is a product of one-dimensional kernels, and the data are gridded.

[1]  L. H. Loomis An Introduction to Abstract Harmonic Analysis , 1953 .

[2]  John C. Holladay,et al.  A smoothest curve approximation , 1957 .

[3]  G. Lorentz Approximation of smooth functions , 1960 .

[4]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .

[5]  P. Laurent,et al.  A general method for the construction of interpolating or smoothing spline-functions , 1968 .

[6]  C. Chui,et al.  Approximation Theory II , 1976 .

[7]  Charles A. Micchelli,et al.  On n-Widths in L ∞ , 1977 .

[8]  Charles A. Micchelli,et al.  Total positivity and the exact $n$-width of certain sets in $L^1$. , 1977 .

[9]  Charles A. Micchelli,et al.  On -widths in ^{∞} , 1977 .

[10]  Charles A. Micchelli,et al.  Some Problems in the Approximation of Functions of Two Variables and n-Widths of Integral Operators , 1978 .

[11]  Nira Dyn,et al.  Perfect splines of minimum norm for monotone norms and norms induced by inner products, with applications to tensor product approximations and n-widths of integral operators , 1983 .

[12]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[13]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[14]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[15]  A. Kushpel SHARP ESTIMATES OF THE WIDTHS OF CONVOLUTION CLASSES , 1989 .

[16]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[17]  A. Ron,et al.  Strictly positive definite functions on spheres in Euclidean spaces , 1994, Math. Comput..

[18]  Sankatha Prasad Singh,et al.  Approximation Theory, Wavelets and Applications , 1995 .

[19]  F. J. Narcowich,et al.  Generalized Hermite interpolation and positive definite kernels on a Riemannian manifold , 1995 .

[20]  T. Gutzmer Interpolation by positive definite functions on locally compact groups with application to SO (3) , 1996 .

[21]  F. J. Narcowich,et al.  Variational Principles and Sobolev-Type Estimates for Generalized Interpolation on a Riemannian Manifold , 1999 .