Invariant Histograms

Abstract We introduce and study a Euclidean-invariant distance histogram function for curves. For a sufficiently regular plane curve, we prove that the cumulative distance histograms based on discretizing the curve by either uniformly spaced or randomly chosen sample points converge to our histogram function. We argue that the histogram function serves as a simple, noise-resistant shape classifier for regular curves under the Euclidean group of rigid motions. Extensions of the underlying ideas to higher-dimensional submanifolds, as well as to area histogram functions invariant under the group of planar area-preserving affine transformations, are discussed.

[1]  Guillermo Sapiro,et al.  Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach , 1994, Geometry-Driven Diffusion in Computer Vision.

[2]  Johannes Wallner,et al.  Integral invariants for robust geometry processing , 2009, Comput. Aided Geom. Des..

[3]  P. Olver,et al.  Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .

[4]  Mireille Boutin,et al.  Which Point Configurations Are Determined by the Distribution of their Pairwise Distances? , 2003, Int. J. Comput. Geom. Appl..

[5]  Özgür Ulusoy,et al.  A histogram-based approach for object-based query-by-shape-and-color in image and video databases , 2005, Image Vis. Comput..

[6]  Hans-Peter Kriegel,et al.  3D Shape Histograms for Similarity Search and Classification in Spatial Databases , 1999, SSD.

[7]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[8]  B. M. Fulk MATH , 1992 .

[9]  Mireille Boutin,et al.  On reconstructing n-point configurations from the distribution of distances or areas , 2003, Adv. Appl. Math..

[10]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[11]  Daniel Cremers,et al.  Integral Invariants and Shape Matching , 2006, Statistics and Analysis of Shapes.

[12]  Gary S. Bloom,et al.  A Counterexample to a Theorem of S. Piccard , 1977, J. Comb. Theory, Ser. A.

[13]  R. R. Martin,et al.  Differential geometry applied to curve and surface design , 1988 .

[14]  Wolfgang Vogt,et al.  Über monotongekrümmte Kurven. , 2022 .

[15]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[16]  K. Kanatani Group-Theoretical Methods in Image Understanding , 1990 .

[17]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[18]  P. B. Yale Geometry and symmetry , 1969 .

[19]  Steven Haker,et al.  Differential and Numerically Invariant Signature Curves Applied to Object Recognition , 1998, International Journal of Computer Vision.

[20]  Facundo Mémoli,et al.  Eurographics Symposium on Point-based Graphics (2007) on the Use of Gromov-hausdorff Distances for Shape Comparison , 2022 .

[21]  Facundo Mémoli,et al.  Gromov–Wasserstein Distances and the Metric Approach to Object Matching , 2011, Found. Comput. Math..

[22]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[23]  Peter J. Olver,et al.  Joint Invariant Signatures , 2001, Found. Comput. Math..

[24]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[25]  金谷 健一 Group-theoretical methods in image understanding , 1990 .

[26]  Walter L. Smith Probability and Statistics , 1959, Nature.