The axiomatics of ordered geometry: I. Ordered incidence spaces

Abstract We present a survey of the rich theory of betweenness and separation, from its beginning with Pasch’s 1882 Vorlesungen uber neuere Geometrie to the present.

[1]  Victor Pambuccian The complexity of plane hyperbolic incidence geometry is (forall)(exist)(forall)(exist) , 2005, Math. Log. Q..

[2]  E. V. Huntington,et al.  A new set of postulates for betweenness, with proof of complete independence , 1924 .

[3]  C. H. Langford Some Theorems on Deducibility , 1926 .

[4]  Oswald Veblen,et al.  A system of axioms for geometry , 1904 .

[5]  Edward V. Huntington Inter-relations among the four principal types of order , 1935 .

[6]  Victor Pambuccian,et al.  A Reverse Analysis of the Sylvester-Gallai Theorem , 2009, Notre Dame J. Formal Log..

[7]  Ernest Nagel,et al.  The Formation of Modern Conceptions of Formal Logic in the Development of Geometry , 1939, Osiris.

[8]  Emanuel Sperner Die Ordnungsfunktionen einer Geometrie , 1949 .

[9]  M. Sholander Trees, lattices, order, and betweenness , 1952 .

[10]  Małgorzata Grochowska-Prazmowska A proof of Pasch's axiom in the absolute theory of oriented parallelity , 1993 .

[11]  Fully orderable near-fields , 1989 .

[12]  W. Floyd,et al.  HYPERBOLIC GEOMETRY , 1996 .

[13]  H. Lenz,et al.  Über Hilbertsche und Spernersche Anordnung II , 1967 .

[14]  Lino Gutiérrez-Novoa Ten axioms for three dimensional Euclidean geometry , 1968 .

[15]  M. F. Smiley,et al.  Transitives of betweenness , 1942 .

[16]  Walter. Benz Vorlesungen über Geometrie der Algebren : Geometrien von Möbius, Laguerre-Lie, Minkowski in einheitlicher und grundlagengeometrischer Behandlung , 1973 .

[17]  Eine Begründung der hyperbolischen Geometrie , 1954 .

[18]  Eine Variante des Fano-Axioms fü angeordnete Ebenen , 1997 .

[19]  A. Schweitzer On a fundamental relation in abstract geometry , 1906 .

[20]  M. K. Bennett Separation conditions on convexity lattices , 1985 .

[21]  Jürgen Eckhoff,et al.  Morris's pigeonhole principle and the Helly theorem for unions of convex sets , 2009 .

[22]  K. Menger The New Foundation of Hyperbolic Geometry , 2002 .

[23]  Alfred Tarski,et al.  Metamathematical discussion of some affine geometries , 1979 .

[24]  Adriano Barlotti Le possibili configurazioni del sistema delle coppie punto-retta $(A,a)$ per cui un piano grafico risulta $(A,a)$-transitivo. , 1957 .

[25]  Arthur Cayley XXIII. A fifth memoir upon quantics , 1858, Philosophical Transactions of the Royal Society of London.

[26]  Axiomatik des Zwischenbegriffes in metrischen Räumen , 1931 .

[27]  Über SeiteneinteiIungen in affinen und euklidischen Ebenen , 1951 .

[28]  A. Kreuzer,et al.  Zur Einbettung von Inzidenzräumen und angeordneten Räumen , 1989 .

[29]  W. Schwabhäuser Zur axiomatisierbarkeit von theorien in der schwachen logik der zweiten stufe , 1967 .

[30]  Philip Ehrlich,et al.  The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .

[31]  Victor Pambuccian,et al.  Early Examples of Resource-Consciousness , 2004, Stud Logica.

[32]  Victor Pambuccian,et al.  Forms of the Pasch axiom in ordered geometry , 2010, Math. Log. Q..

[33]  H. F. Baker Principles of Geometry , 1934 .

[34]  Juraj Šimko Metrizable and ℝ-metrizable betweenness spaces , 1999 .

[35]  R. Löwen,et al.  Compact Projective Planes: With an Introduction to Octonion Geometry , 1995 .

[36]  E. Sperner Beziehungen zwischen geometrischer und algebraischer Anordnung , 1948 .

[37]  Garrett Birkhoff,et al.  Lattice Theory Revised Edition , 1948 .

[38]  Wanda Szmielew,et al.  From Affine to Euclidean Geometry: An Axiomatic Approach , 1983 .

[39]  R. Webster,et al.  Convexity spaces. II. Separation , 1973 .

[40]  Vasek Chvátal,et al.  Sylvester–Gallai Theorem and Metric Betweenness , 2004, Discret. Comput. Geom..

[41]  H. Tecklenburg Semi-Ordered Ternary Rings , 1991 .

[42]  V. Pambuccian The elementary geometry of a triangular world with hexagonal circles , 2008 .

[43]  F. Buekenhout Les Plans de Benz: Une approche unifiee des plans de Moebius, Laguerre et Minkowski , 1981 .

[44]  Sibylla Prieß-Crampe,et al.  Angeordnete Strukturen : Gruppen, Körper, projektive Ebenen , 1983 .

[45]  K. Borsuk,et al.  Foundations of geometry : Euclidean and Bolyai-Lobachevskian geometry, projective geometry , 1960 .

[46]  H. Karzel,et al.  Geschichte der Geometrie seit Hilbert , 1988 .

[47]  Davide Rizza Abstraction and Intuition in Peano's Axiomatizations of Geometry , 2009 .

[48]  Independent axioms for Convexity , 1974 .

[49]  On ordered skew fields , 1952 .

[50]  Pavol Zlatoš,et al.  Axiomatization and undecidability results for metrizable betweenness relations , 1995 .

[51]  Jan von Plato,et al.  A Constructive Approach to Sylvester's Conjecture , 2005, J. Univers. Comput. Sci..

[52]  B. B. Phadke A triangular world with hexagonal circles , 1975 .

[53]  Geometrische Bewertungen in affinen Räumen , 1976 .

[54]  F. Kalhoff Anordnungsräume unter der Moulton Konstruktion und Ebenen der Lenz Klasse III , 1990 .

[55]  John Cowles The Relative Expressive Power of Some Logics Extending First-Order Logic , 1979, J. Symb. Log..

[56]  H. Lenz Kleiner Desarguesscher Satz und Dualität in projektiven Ebenen. , 1955 .

[57]  Martin Altwegg,et al.  Zur Axiomatik der teilweise geordneten Mengen , 1950 .

[58]  V. Pambuccian,et al.  Positive existential definability of parallelism in terms of betweenness in Archimedean ordered affine geometry , 2011 .

[59]  A. Tarski,et al.  Metamathematische Methoden in der Geometrie , 1983 .

[60]  H. G. Forder The foundations of Euclidean geometry , 1927 .

[61]  R. Webster,et al.  Convexity spaces. III. Dimension , 1977 .

[62]  Erwin Engeler Foundations of Mathematics: Questions of Analysis, Geometry & Algorithmics , 1993 .

[63]  Leonid Libkin,et al.  Parallel axiom in convexity lattices , 1992 .

[64]  José Ferreirós,et al.  The Road to Modern Logic—An Interpretation , 2001, Bulletin of Symbolic Logic.

[65]  Halfordered sets, halfordered chain structures and splittings by chains , 2002 .

[66]  H. Coxeter,et al.  The Real Projective Plane , 1992 .

[67]  The Concept of Join System and Its Basic Properties , 1961 .

[68]  Ordnungsfunktionen, die auf Seiteneinteilungen besonderer Art führen , 1961 .

[69]  Adi Ben-Israel,et al.  Ordered Incidence geometry and the geometric foundations of convexity theory , 1987 .

[70]  E. H. Moore,et al.  Introduction to a form of general analysis , 2012 .

[71]  Michael Scanlan Who Were the American Postulate Theorists , 1991, J. Symb. Log..

[72]  M. Grochowska Ordered affine geometry based on the notion of positive dilatation groups , 1986 .

[73]  E V Huntington Sets of Completely Independent Postulates for Cyclic Order. , 1924, Proceedings of the National Academy of Sciences of the United States of America.

[74]  H. Kroll Ordnungsfunktionen in Möbiusebenen , 1971 .

[75]  Erwin Engeler,et al.  Remarks on the theory of geometrical constructions , 1968 .

[76]  Why are surjective lineations of the Archimedean hyperbolic plane motions? , 2003 .

[77]  Dirk Windelberg Einführung in die Geometrie , 1973 .

[78]  R. Moufang Die Einführung der idealen Elemente in die ebene Geometrie mit Hilfe des Satzes vom vollständigen Vierseit , 1931 .

[79]  R. H. Bruck,et al.  The structure of alternative division rings , 1951 .

[80]  Arthur Cayley,et al.  IV. A sixth memoir upon quantics , 1859 .

[81]  Walter Wenzel,et al.  A Characterization of Ordered Sets and Lattices via Betweenness Relations , 2004 .

[82]  Victor Pambuccian,et al.  Axiomatizing geometric constructions , 2008, J. Appl. Log..

[83]  Franz Kalhoff Eine Kennzeichnung anordnungsfähiger Ternärkörper , 1988 .

[84]  F. Bachmann Eine Kennzeichnung der Gruppe der gebrochen-linearen Transformationen , 1953 .

[85]  H. Guggenheimer,et al.  The Jordan curve theorem and an unpublished manuscript by max dehn , 1977 .

[86]  Veronica Gavagna Sui fondamenti della geometria , 2008 .

[87]  J. Shepperd Transitivities of Betweenness and Separation and the Definition of Betweenness and Separation Groups , 1956 .

[88]  David Hilbert,et al.  The Foundations of Geometry , 1903, The Mathematical Gazette.

[89]  S. Prieß-Crampe Archimedisch angeordnete Ternärkörper , 1966 .

[90]  Victor Pambuccian A Methodologically Pure Proof of a Convex Geometry Problem , 2001 .

[91]  Garrett Birkhoff,et al.  Convexity lattices , 1985 .

[92]  C. H. Langford Theorems on Deducibility , 1926 .

[93]  J. Truss Betweenness relations and cycle-free partial orders , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.

[94]  Jakob Von Joussen,et al.  Die Anordnungsfähigkeit der freien Ebenen , 1966 .

[95]  Michael Scanlan American Postulate Theorists and Alfred Tarski , 2003 .

[96]  Dirk Schlimm,et al.  PASCH’S PHILOSOPHY OF MATHEMATICS , 2010, The Review of Symbolic Logic.

[97]  P. Borwein,et al.  A survey of Sylvester's problem and its generalizations , 1990 .

[98]  E. Artin,et al.  Algebraische Konstruktion reeller Körper , 1927 .

[99]  Andrzej Salwicki,et al.  Algorithmic Logic , 1987 .

[100]  Sibylla Crampe Angeordnete projektive Ebenen , 1958 .

[101]  Jakob Joussen Eine Bemerkung zu einem Satz von Sylvester , 1984 .

[102]  R. Webster,et al.  Convexity spaces. I. The basic properties , 1972 .

[103]  Philip Ehrlich,et al.  FROM COMPLETENESS TO ARCHIMEDEAN COMPLETENES , 2004, Synthese.

[104]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[105]  J. Cowles The theory of Archimedean real closed fields in logics with Ramsey quantifiers , 1979 .

[106]  Xiaomin Chen,et al.  The Sylvester-Chvatal Theorem , 2006, Discret. Comput. Geom..

[107]  E. V. Huntington,et al.  Sets of independent postulates for betweenness , 1917 .

[108]  A New Foundation of Non-Euclidean, Affine, Real Projective and Euclidean Geometry. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Reinhold Baer Homogeneity of Projective Planes , 1942 .

[110]  M. F. Smiley,et al.  Transitivities of Betweenness , 1942 .

[111]  H. F. Baker,et al.  Principles of Geometry. Vol. I., Foundations , 1922 .

[112]  Walter Prenowitz,et al.  Geometrics and Join Spaces. , 1972 .

[113]  E. Glock Die Orientierungsfunktionen eines affinen Raumes , 1962 .

[114]  A. Prestel,et al.  Non-axiomatizability of real general affine geometry , 1979 .

[115]  Another Splitting of the Pasch Axiom , 2011 .

[116]  Wanda Szmielew Concerning the order and the semi-order of n-dimensional Euclidean space , 1980 .

[117]  Forest Ray Moulton,et al.  A simple non-Desarguesian plane geometry , 1902 .

[118]  James W. Anderson,et al.  Hyperbolic geometry , 1999 .

[119]  K. Menger Untersuchungen über allgemeine Metrik , 1928 .

[120]  Peter M. Neumann,et al.  Relations related to betweenness : their structure and automorphisms , 1998 .

[121]  A. Kreuzer Zur Abhängigkeit von Anordnungsaxiomen , 1988 .

[122]  P. Zlatos,et al.  Axiomatization and undecidability results for linear betweenness relations , 1996 .

[123]  Graham A. Niblo,et al.  On Hibert's Metric for Simplices , 1993 .

[124]  A. Schweitzer A Theory of Geometrical Relations , 1909 .

[125]  J Robert,et al.  Linearity geometry. $I. *$ , 1963 .

[126]  Erwin Engeler,et al.  On the structure of algorithmic problems , 1973, Automatentheorie und Formale Sprachen.

[127]  H. Kroll Anordnungsfragen in Benz-Ebenen , 1977 .

[128]  Ivo Düntsch,et al.  Betweenness and Comparability Obtained from Binary Relations , 2006, RelMiCS.

[129]  J. von Plato A constructive theory of ordered affine geometry , 1998 .

[130]  Sébastien Gandon Pasch entre Klein et Peano: empirisme et idéalité en géométrie , 2005, Dialogue.

[131]  A. Schweitzer Concerning Linear Projective Order , 1912 .

[132]  Angeordnete Hjelmslevsche Geometrie , 1981 .

[133]  Maria Moszyńska Theory of equidistance and betweenness relations in regular metric spaces , 1977 .

[134]  Federigo Enriques,et al.  Die grundlagen der Geometrie , 1923 .

[135]  David Hilbert,et al.  Grundlagen der Geometrie , 2022 .

[136]  R. Webster,et al.  Generalizations of the theorems of Radon, Helly, and Carathéodory , 1969 .

[137]  W. A. Coppel Foundations of Convex Geometry , 1998 .

[138]  W. S. Contro Von Pasch zu Hilbert , 1976 .

[139]  W. Prenowitz Join Geometries: A Theory of Convex Sets and Linear Geometry , 1979 .

[140]  H. Coxeter,et al.  Introduction to Geometry. , 1961 .

[141]  Erwin Engeler Algorithmic properties of structures , 2005, Mathematical systems theory.

[142]  Projective-type axioms for the hyperbolic plane , 1992 .

[143]  Eliakim Hastings Moore On The Projective Axioms Of Geometry , 2009 .

[144]  von David Hilbert Über den Satz von der Gleichheit der Basiswinkel im gleich-schenkligen Dreieck , 1902 .

[145]  W. V. Walle On the complete independence of the postulates for betweenness , 1924 .

[146]  Friedrich Bachmann,et al.  Aufbau der Geometrie aus dem Spiegelungsbegriff , 1959 .

[147]  A. Kempe On the Relation between the Logical Theory of Classes and the Geometrical Theory of Points , 1889 .

[148]  Matti Eklund On How Logic Became First-Order , 1996 .

[149]  H. Coxeter A Problem of Collinear Points , 1948 .

[150]  A. Kreuzer Klassifizierung von Halbordnungen , 1988 .

[151]  ORDER AND TOPOLOGY IN PROJECTIVE PLANES. , 1952 .

[152]  H. S. M. Coxeter,et al.  Vorlesungen über die Theorie der Polyeder , 1935 .

[153]  Philip Ehrlich,et al.  Hahn’s Über die Nichtarchimedischen Grössensysteme and the Development of the Modern Theory of Magnitudes and Numbers to Measure Them , 1995 .

[154]  E. Steinitz Bedingt konvergente Reihen und konvexe Systeme. , 1913 .

[155]  V. Pambuccian Weakly ordered plane geometry , 2010 .

[156]  D. Defays,et al.  Tree representations of ternary relations , 1979 .

[157]  E. V. Huntington A Set of Independent Postulates for Cyclic Order. , 1916, Proceedings of the National Academy of Sciences of the United States of America.