The axiomatics of ordered geometry: I. Ordered incidence spaces
暂无分享,去创建一个
[1] Victor Pambuccian. The complexity of plane hyperbolic incidence geometry is (forall)(exist)(forall)(exist) , 2005, Math. Log. Q..
[2] E. V. Huntington,et al. A new set of postulates for betweenness, with proof of complete independence , 1924 .
[3] C. H. Langford. Some Theorems on Deducibility , 1926 .
[4] Oswald Veblen,et al. A system of axioms for geometry , 1904 .
[5] Edward V. Huntington. Inter-relations among the four principal types of order , 1935 .
[6] Victor Pambuccian,et al. A Reverse Analysis of the Sylvester-Gallai Theorem , 2009, Notre Dame J. Formal Log..
[7] Ernest Nagel,et al. The Formation of Modern Conceptions of Formal Logic in the Development of Geometry , 1939, Osiris.
[8] Emanuel Sperner. Die Ordnungsfunktionen einer Geometrie , 1949 .
[9] M. Sholander. Trees, lattices, order, and betweenness , 1952 .
[10] Małgorzata Grochowska-Prazmowska. A proof of Pasch's axiom in the absolute theory of oriented parallelity , 1993 .
[11] Fully orderable near-fields , 1989 .
[12] W. Floyd,et al. HYPERBOLIC GEOMETRY , 1996 .
[13] H. Lenz,et al. Über Hilbertsche und Spernersche Anordnung II , 1967 .
[14] Lino Gutiérrez-Novoa. Ten axioms for three dimensional Euclidean geometry , 1968 .
[15] M. F. Smiley,et al. Transitives of betweenness , 1942 .
[16] Walter. Benz. Vorlesungen über Geometrie der Algebren : Geometrien von Möbius, Laguerre-Lie, Minkowski in einheitlicher und grundlagengeometrischer Behandlung , 1973 .
[17] Eine Begründung der hyperbolischen Geometrie , 1954 .
[18] Eine Variante des Fano-Axioms fü angeordnete Ebenen , 1997 .
[19] A. Schweitzer. On a fundamental relation in abstract geometry , 1906 .
[20] M. K. Bennett. Separation conditions on convexity lattices , 1985 .
[21] Jürgen Eckhoff,et al. Morris's pigeonhole principle and the Helly theorem for unions of convex sets , 2009 .
[22] K. Menger. The New Foundation of Hyperbolic Geometry , 2002 .
[23] Alfred Tarski,et al. Metamathematical discussion of some affine geometries , 1979 .
[24] Adriano Barlotti. Le possibili configurazioni del sistema delle coppie punto-retta $(A,a)$ per cui un piano grafico risulta $(A,a)$-transitivo. , 1957 .
[25] Arthur Cayley. XXIII. A fifth memoir upon quantics , 1858, Philosophical Transactions of the Royal Society of London.
[26] Axiomatik des Zwischenbegriffes in metrischen Räumen , 1931 .
[27] Über SeiteneinteiIungen in affinen und euklidischen Ebenen , 1951 .
[28] A. Kreuzer,et al. Zur Einbettung von Inzidenzräumen und angeordneten Räumen , 1989 .
[29] W. Schwabhäuser. Zur axiomatisierbarkeit von theorien in der schwachen logik der zweiten stufe , 1967 .
[30] Philip Ehrlich,et al. The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .
[31] Victor Pambuccian,et al. Early Examples of Resource-Consciousness , 2004, Stud Logica.
[32] Victor Pambuccian,et al. Forms of the Pasch axiom in ordered geometry , 2010, Math. Log. Q..
[33] H. F. Baker. Principles of Geometry , 1934 .
[34] Juraj Šimko. Metrizable and ℝ-metrizable betweenness spaces , 1999 .
[35] R. Löwen,et al. Compact Projective Planes: With an Introduction to Octonion Geometry , 1995 .
[36] E. Sperner. Beziehungen zwischen geometrischer und algebraischer Anordnung , 1948 .
[37] Garrett Birkhoff,et al. Lattice Theory Revised Edition , 1948 .
[38] Wanda Szmielew,et al. From Affine to Euclidean Geometry: An Axiomatic Approach , 1983 .
[39] R. Webster,et al. Convexity spaces. II. Separation , 1973 .
[40] Vasek Chvátal,et al. Sylvester–Gallai Theorem and Metric Betweenness , 2004, Discret. Comput. Geom..
[41] H. Tecklenburg. Semi-Ordered Ternary Rings , 1991 .
[42] V. Pambuccian. The elementary geometry of a triangular world with hexagonal circles , 2008 .
[43] F. Buekenhout. Les Plans de Benz: Une approche unifiee des plans de Moebius, Laguerre et Minkowski , 1981 .
[44] Sibylla Prieß-Crampe,et al. Angeordnete Strukturen : Gruppen, Körper, projektive Ebenen , 1983 .
[45] K. Borsuk,et al. Foundations of geometry : Euclidean and Bolyai-Lobachevskian geometry, projective geometry , 1960 .
[46] H. Karzel,et al. Geschichte der Geometrie seit Hilbert , 1988 .
[47] Davide Rizza. Abstraction and Intuition in Peano's Axiomatizations of Geometry , 2009 .
[48] Independent axioms for Convexity , 1974 .
[49] On ordered skew fields , 1952 .
[50] Pavol Zlatoš,et al. Axiomatization and undecidability results for metrizable betweenness relations , 1995 .
[51] Jan von Plato,et al. A Constructive Approach to Sylvester's Conjecture , 2005, J. Univers. Comput. Sci..
[52] B. B. Phadke. A triangular world with hexagonal circles , 1975 .
[53] Geometrische Bewertungen in affinen Räumen , 1976 .
[54] F. Kalhoff. Anordnungsräume unter der Moulton Konstruktion und Ebenen der Lenz Klasse III , 1990 .
[55] John Cowles. The Relative Expressive Power of Some Logics Extending First-Order Logic , 1979, J. Symb. Log..
[56] H. Lenz. Kleiner Desarguesscher Satz und Dualität in projektiven Ebenen. , 1955 .
[57] Martin Altwegg,et al. Zur Axiomatik der teilweise geordneten Mengen , 1950 .
[58] V. Pambuccian,et al. Positive existential definability of parallelism in terms of betweenness in Archimedean ordered affine geometry , 2011 .
[59] A. Tarski,et al. Metamathematische Methoden in der Geometrie , 1983 .
[60] H. G. Forder. The foundations of Euclidean geometry , 1927 .
[61] R. Webster,et al. Convexity spaces. III. Dimension , 1977 .
[62] Erwin Engeler. Foundations of Mathematics: Questions of Analysis, Geometry & Algorithmics , 1993 .
[63] Leonid Libkin,et al. Parallel axiom in convexity lattices , 1992 .
[64] José Ferreirós,et al. The Road to Modern Logic—An Interpretation , 2001, Bulletin of Symbolic Logic.
[65] Halfordered sets, halfordered chain structures and splittings by chains , 2002 .
[66] H. Coxeter,et al. The Real Projective Plane , 1992 .
[67] The Concept of Join System and Its Basic Properties , 1961 .
[68] Ordnungsfunktionen, die auf Seiteneinteilungen besonderer Art führen , 1961 .
[69] Adi Ben-Israel,et al. Ordered Incidence geometry and the geometric foundations of convexity theory , 1987 .
[70] E. H. Moore,et al. Introduction to a form of general analysis , 2012 .
[71] Michael Scanlan. Who Were the American Postulate Theorists , 1991, J. Symb. Log..
[72] M. Grochowska. Ordered affine geometry based on the notion of positive dilatation groups , 1986 .
[73] E V Huntington. Sets of Completely Independent Postulates for Cyclic Order. , 1924, Proceedings of the National Academy of Sciences of the United States of America.
[74] H. Kroll. Ordnungsfunktionen in Möbiusebenen , 1971 .
[75] Erwin Engeler,et al. Remarks on the theory of geometrical constructions , 1968 .
[76] Why are surjective lineations of the Archimedean hyperbolic plane motions? , 2003 .
[77] Dirk Windelberg. Einführung in die Geometrie , 1973 .
[78] R. Moufang. Die Einführung der idealen Elemente in die ebene Geometrie mit Hilfe des Satzes vom vollständigen Vierseit , 1931 .
[79] R. H. Bruck,et al. The structure of alternative division rings , 1951 .
[80] Arthur Cayley,et al. IV. A sixth memoir upon quantics , 1859 .
[81] Walter Wenzel,et al. A Characterization of Ordered Sets and Lattices via Betweenness Relations , 2004 .
[82] Victor Pambuccian,et al. Axiomatizing geometric constructions , 2008, J. Appl. Log..
[83] Franz Kalhoff. Eine Kennzeichnung anordnungsfähiger Ternärkörper , 1988 .
[84] F. Bachmann. Eine Kennzeichnung der Gruppe der gebrochen-linearen Transformationen , 1953 .
[85] H. Guggenheimer,et al. The Jordan curve theorem and an unpublished manuscript by max dehn , 1977 .
[86] Veronica Gavagna. Sui fondamenti della geometria , 2008 .
[87] J. Shepperd. Transitivities of Betweenness and Separation and the Definition of Betweenness and Separation Groups , 1956 .
[88] David Hilbert,et al. The Foundations of Geometry , 1903, The Mathematical Gazette.
[89] S. Prieß-Crampe. Archimedisch angeordnete Ternärkörper , 1966 .
[90] Victor Pambuccian. A Methodologically Pure Proof of a Convex Geometry Problem , 2001 .
[91] Garrett Birkhoff,et al. Convexity lattices , 1985 .
[92] C. H. Langford. Theorems on Deducibility , 1926 .
[93] J. Truss. Betweenness relations and cycle-free partial orders , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.
[94] Jakob Von Joussen,et al. Die Anordnungsfähigkeit der freien Ebenen , 1966 .
[95] Michael Scanlan. American Postulate Theorists and Alfred Tarski , 2003 .
[96] Dirk Schlimm,et al. PASCH’S PHILOSOPHY OF MATHEMATICS , 2010, The Review of Symbolic Logic.
[97] P. Borwein,et al. A survey of Sylvester's problem and its generalizations , 1990 .
[98] E. Artin,et al. Algebraische Konstruktion reeller Körper , 1927 .
[99] Andrzej Salwicki,et al. Algorithmic Logic , 1987 .
[100] Sibylla Crampe. Angeordnete projektive Ebenen , 1958 .
[101] Jakob Joussen. Eine Bemerkung zu einem Satz von Sylvester , 1984 .
[102] R. Webster,et al. Convexity spaces. I. The basic properties , 1972 .
[103] Philip Ehrlich,et al. FROM COMPLETENESS TO ARCHIMEDEAN COMPLETENES , 2004, Synthese.
[104] Jörg Flum,et al. Finite model theory , 1995, Perspectives in Mathematical Logic.
[105] J. Cowles. The theory of Archimedean real closed fields in logics with Ramsey quantifiers , 1979 .
[106] Xiaomin Chen,et al. The Sylvester-Chvatal Theorem , 2006, Discret. Comput. Geom..
[107] E. V. Huntington,et al. Sets of independent postulates for betweenness , 1917 .
[108] A New Foundation of Non-Euclidean, Affine, Real Projective and Euclidean Geometry. , 1938, Proceedings of the National Academy of Sciences of the United States of America.
[109] Reinhold Baer. Homogeneity of Projective Planes , 1942 .
[110] M. F. Smiley,et al. Transitivities of Betweenness , 1942 .
[111] H. F. Baker,et al. Principles of Geometry. Vol. I., Foundations , 1922 .
[112] Walter Prenowitz,et al. Geometrics and Join Spaces. , 1972 .
[113] E. Glock. Die Orientierungsfunktionen eines affinen Raumes , 1962 .
[114] A. Prestel,et al. Non-axiomatizability of real general affine geometry , 1979 .
[115] Another Splitting of the Pasch Axiom , 2011 .
[116] Wanda Szmielew. Concerning the order and the semi-order of n-dimensional Euclidean space , 1980 .
[117] Forest Ray Moulton,et al. A simple non-Desarguesian plane geometry , 1902 .
[118] James W. Anderson,et al. Hyperbolic geometry , 1999 .
[119] K. Menger. Untersuchungen über allgemeine Metrik , 1928 .
[120] Peter M. Neumann,et al. Relations related to betweenness : their structure and automorphisms , 1998 .
[121] A. Kreuzer. Zur Abhängigkeit von Anordnungsaxiomen , 1988 .
[122] P. Zlatos,et al. Axiomatization and undecidability results for linear betweenness relations , 1996 .
[123] Graham A. Niblo,et al. On Hibert's Metric for Simplices , 1993 .
[124] A. Schweitzer. A Theory of Geometrical Relations , 1909 .
[125] J Robert,et al. Linearity geometry. $I. *$ , 1963 .
[126] Erwin Engeler,et al. On the structure of algorithmic problems , 1973, Automatentheorie und Formale Sprachen.
[127] H. Kroll. Anordnungsfragen in Benz-Ebenen , 1977 .
[128] Ivo Düntsch,et al. Betweenness and Comparability Obtained from Binary Relations , 2006, RelMiCS.
[129] J. von Plato. A constructive theory of ordered affine geometry , 1998 .
[130] Sébastien Gandon. Pasch entre Klein et Peano: empirisme et idéalité en géométrie , 2005, Dialogue.
[131] A. Schweitzer. Concerning Linear Projective Order , 1912 .
[132] Angeordnete Hjelmslevsche Geometrie , 1981 .
[133] Maria Moszyńska. Theory of equidistance and betweenness relations in regular metric spaces , 1977 .
[134] Federigo Enriques,et al. Die grundlagen der Geometrie , 1923 .
[135] David Hilbert,et al. Grundlagen der Geometrie , 2022 .
[136] R. Webster,et al. Generalizations of the theorems of Radon, Helly, and Carathéodory , 1969 .
[137] W. A. Coppel. Foundations of Convex Geometry , 1998 .
[138] W. S. Contro. Von Pasch zu Hilbert , 1976 .
[139] W. Prenowitz. Join Geometries: A Theory of Convex Sets and Linear Geometry , 1979 .
[140] H. Coxeter,et al. Introduction to Geometry. , 1961 .
[141] Erwin Engeler. Algorithmic properties of structures , 2005, Mathematical systems theory.
[142] Projective-type axioms for the hyperbolic plane , 1992 .
[143] Eliakim Hastings Moore. On The Projective Axioms Of Geometry , 2009 .
[144] von David Hilbert. Über den Satz von der Gleichheit der Basiswinkel im gleich-schenkligen Dreieck , 1902 .
[145] W. V. Walle. On the complete independence of the postulates for betweenness , 1924 .
[146] Friedrich Bachmann,et al. Aufbau der Geometrie aus dem Spiegelungsbegriff , 1959 .
[147] A. Kempe. On the Relation between the Logical Theory of Classes and the Geometrical Theory of Points , 1889 .
[148] Matti Eklund. On How Logic Became First-Order , 1996 .
[149] H. Coxeter. A Problem of Collinear Points , 1948 .
[150] A. Kreuzer. Klassifizierung von Halbordnungen , 1988 .
[151] ORDER AND TOPOLOGY IN PROJECTIVE PLANES. , 1952 .
[152] H. S. M. Coxeter,et al. Vorlesungen über die Theorie der Polyeder , 1935 .
[153] Philip Ehrlich,et al. Hahn’s Über die Nichtarchimedischen Grössensysteme and the Development of the Modern Theory of Magnitudes and Numbers to Measure Them , 1995 .
[154] E. Steinitz. Bedingt konvergente Reihen und konvexe Systeme. , 1913 .
[155] V. Pambuccian. Weakly ordered plane geometry , 2010 .
[156] D. Defays,et al. Tree representations of ternary relations , 1979 .
[157] E. V. Huntington. A Set of Independent Postulates for Cyclic Order. , 1916, Proceedings of the National Academy of Sciences of the United States of America.