Invariance groups of finite functions and orbit equivalence of permutation groups
暂无分享,去创建一个
Reinhard Pöschel | Tamás Waldhauser | Géza Makay | Eszter K. Horváth | R. Pöschel | Tamás Waldhauser | G. Makay | E. Horváth | T. Waldhauser
[1] On Orbit Equivalent Permutation Groups , 2008 .
[2] P. Müller. Finite Permutation Groups , 2013 .
[3] H. Wielandt,et al. Permutation groups through invariant relations and invariant functions , 1969 .
[4] On orbit equivalent permutation groups , 1984 .
[5] Robert Remak. Über die Darstellung der endlichen Gruppen als Untergruppen direkter Produkte. , 1930 .
[6] Reinhard Pöschel,et al. Funktionen- und Relationenalgebren , 1979 .
[8] Ákos Seress. Primitive Groups with no Regular Orbits on the Set of Subsets , 1997 .
[9] Felix Klein,et al. Vorlesungen über die Theorie der elliptischen Modulfunktionen , 1966 .
[10] P. Gács,et al. Algorithms , 1992 .
[11] H. Weyl. Permutation Groups , 2022 .
[12] H JavierGuachalla. The Mathematics , 2007 .
[13] On finite permutation groups with the same orbits on unordered sets , 1985 .
[14] Andrzej Kisielewicz,et al. Symmetry Groups of Boolean Functions and Constructions of Permutation Groups , 1998 .
[15] Peter Clote. Boolean functions, invariance groups and parallel complexity , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.
[16] Reinhard Pöschel. Galois Connections for Operations and Relations , 2004 .
[17] D. M. Clark. Theory of Groups , 2012 .
[18] Peter L. Hammer,et al. Boolean Functions - Theory, Algorithms, and Applications , 2011, Encyclopedia of mathematics and its applications.
[19] Alfred Bochert. Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann , 1897 .