Invariance groups of finite functions and orbit equivalence of permutation groups

Abstract Which subgroups of the symmetric group Sn arise as invariance groups of n-variable functions defined on a k-element domain? It appears that the higher the difference n-k, the more difficult it is to answer this question. For k ≤ n, the answer is easy: all subgroups of Sn are invariance groups. We give a complete answer in the cases k = n-1 and k = n-2, and we also give a partial answer in the general case: we describe invariance groups when n is much larger than n-k. The proof utilizes Galois connections and the corresponding closure operators on Sn, which turn out to provide a generalization of orbit equivalence of permutation groups. We also present some computational results, which show that all primitive groups except for the alternating groups arise as invariance groups of functions defined on a three-element domain.

[1]  On Orbit Equivalent Permutation Groups , 2008 .

[2]  P. Müller Finite Permutation Groups , 2013 .

[3]  H. Wielandt,et al.  Permutation groups through invariant relations and invariant functions , 1969 .

[4]  On orbit equivalent permutation groups , 1984 .

[5]  Robert Remak Über die Darstellung der endlichen Gruppen als Untergruppen direkter Produkte. , 1930 .

[6]  Reinhard Pöschel,et al.  Funktionen- und Relationenalgebren , 1979 .

[7]  Vorlesungen über die Theorie der elliptischen Modulfunctionen / Robert Klein ; ausgearbeitet und vervollständigt von Robert Fricke , 1890 .

[8]  Ákos Seress Primitive Groups with no Regular Orbits on the Set of Subsets , 1997 .

[9]  Felix Klein,et al.  Vorlesungen über die Theorie der elliptischen Modulfunktionen , 1966 .

[10]  P. Gács,et al.  Algorithms , 1992 .

[11]  H. Weyl Permutation Groups , 2022 .

[12]  H JavierGuachalla The Mathematics , 2007 .

[13]  On finite permutation groups with the same orbits on unordered sets , 1985 .

[14]  Andrzej Kisielewicz,et al.  Symmetry Groups of Boolean Functions and Constructions of Permutation Groups , 1998 .

[15]  Peter Clote Boolean functions, invariance groups and parallel complexity , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[16]  Reinhard Pöschel Galois Connections for Operations and Relations , 2004 .

[17]  D. M. Clark Theory of Groups , 2012 .

[18]  Peter L. Hammer,et al.  Boolean Functions - Theory, Algorithms, and Applications , 2011, Encyclopedia of mathematics and its applications.

[19]  Alfred Bochert Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann , 1897 .