Uniform random number generators

We briefly overview the design principles, implementation techniques, and empirical testing of uniform random number generators for simulation. We first discuss some philosophical issues and quality criteria. Then we explain a few concrete families of generators and give appropriate references to further details and to recommended implementations.

[1]  P. Hellekalek,et al.  Inversive pseudorandom number generators: concepts, results and links , 1995, Winter Simulation Conference Proceedings, 1995..

[2]  Pierre L'Ecuyer,et al.  Distribution properties of multiply-with-c arry random number generators , 1997, Math. Comput..

[3]  Art B. Owen,et al.  Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.

[4]  William H. Press,et al.  Portable Random Number Generators , 1992 .

[5]  G. Folland Fourier analysis and its applications , 1992 .

[6]  Makoto Matsumoto,et al.  Twisted GFSR generators , 1992, TOMC.

[7]  Pierre L'Ecuyer,et al.  Random numbers for simulation , 1990, CACM.

[8]  Pei-Chi Wu,et al.  Multiplicative, congruential random-number generators with multiplier ± 2k1 ± 2k2 and modulus 2p - 1 , 1997, TOMS.

[9]  Harald Niederreiter,et al.  New Developments in Uniform Pseudorandom Number and Vector Generation , 1995 .

[10]  R. R. Coveyou,et al.  Fourier Analysis of Uniform Random Number Generators , 1967, JACM.

[11]  H. Niederreiter Nonlinear Methods for Pseudorandom Number and Vector Generation , 1992 .

[12]  Manuel Blum,et al.  A Simple Unpredictable Pseudo-Random Number Generator , 1986, SIAM J. Comput..

[13]  Pierre L'Ecuyer,et al.  Uniform random number generation , 1994, Ann. Oper. Res..

[14]  M. J. Durst Using linear congruential generators for parallel random number generation , 1989, WSC '89.

[15]  H. Solomon,et al.  On Combining Pseudorandom Number Generators , 1979 .

[16]  Masanori Fushimi Increasing the Orders of Equidistribution of the Leading Bits of the Tausworthe Sequence , 1983, Inf. Process. Lett..

[17]  B. D. Ripley,et al.  Uses and abuses of statistical simulation , 1988, Math. Program..

[18]  George Marsaglia,et al.  A random number generator for PC's , 1990 .

[19]  Shu Tezuka,et al.  Calculation of Fibonacci polynomials for GFSR sequences with low discrepancies , 1993 .

[20]  J. Heringa,et al.  New Primitive Trinomials Of Mersenne-Exponent Degrees For Random-Number Generation , 1992 .

[21]  Jürgen Eichenauer-Herrmann,et al.  A remark on long-range correlations in multiplicative congruential pseudo random number generators , 1989 .

[22]  Bruce Jay Collings,et al.  Compound Random Number Generators , 1987 .

[23]  Pierre L'Ecuyer,et al.  Combined Multiple Recursive Random Number Generators , 1995, Oper. Res..

[24]  Douglas J. Morrice,et al.  Higher-order cumulant spectral-based statistical tests of pseudo-random variate generators , 1992, WSC '92.

[25]  Pierre L'Ecuyer,et al.  Random Number Generators and Empirical Tests , 1998 .

[26]  I. D. Hill,et al.  An Efficient and Portable Pseudo‐Random Number Generator , 1982 .

[27]  P. L’Ecuyer,et al.  Supplement to On the Distribution of k-Dimensional Vectors for Simple and Combined Tausworthe Sequences , 1991 .

[28]  U. Dieter,et al.  How to calculate shortest vectors in a lattice , 1975 .

[29]  Pierre L'Ecuyer,et al.  Bad Lattice Structures for Vectors of Nonsuccessive Values Produced by Some Linear Recurrences , 1997, INFORMS J. Comput..

[30]  Pierre L'Ecuyer,et al.  Beware of linear congruential generators with multipliers of the form a = ±2q ±2r , 1999, TOMS.

[31]  Harald Niederreiter,et al.  The weighted spectral test: diaphony , 1998, TOMC.

[32]  Stefan Wegenkittl,et al.  A survey of quadratic and inversive congruential pseudorandom numbers , 1998 .

[33]  David C. Hoaglin,et al.  Remark AS R24: A Remark on Algorithm AS 98: The Spectral Test for the Evaluation of Congruential Pseudo-Random Generators , 1978 .

[34]  Masanori Fushimi An equivalence relation between Tausworthe and GFSR sequences and applications , 1989 .

[35]  F. James A Review of Pseudorandom Number Generators , 1990 .

[36]  H. Grothe,et al.  The lattice structure of pseudo-random vectors generated by matrix generators , 1988 .

[37]  Brian D. Ripley,et al.  Thoughts on pseudorandom number generators , 1990 .

[38]  Lothar Afflerbach,et al.  The exact determination of rectangle discrepancy for linear congruential pseudorandom numbers , 1989 .

[39]  Jürgen Lehn,et al.  A multiple recursive non-linear congruential pseudo random number generator , 1987 .

[40]  Makoto Matsumoto,et al.  Getting rid of correlations among pseudorandom numbers: discarding versus tempering , 1999, TOMC.

[41]  Peter Hellekalek,et al.  On correlation analysis of pseudorandom numbers , 1998 .

[42]  A. Compagner The hierarchy of correlations in random binary sequences , 1991 .

[43]  Holger Grothe,et al.  Matrix generators for pseudo-random vector generation , 1987 .

[44]  George Marsaglia Note on a Proposed Test for Random Number Generators , 1985, IEEE Transactions on Computers.

[45]  Pierre L'Ecuyer,et al.  Tables of linear congruential generators of different sizes and good lattice structure , 1999, Math. Comput..

[46]  P. L’Ecuyer,et al.  Structural properties for two classes of combined random number generators , 1990 .

[47]  Pierre L'Ecuyer,et al.  Orbits and lattices for linear random number generators with composite moduli , 1996, Math. Comput..

[48]  P. L’Ecuyer,et al.  On the lattice structure of certain linear congruential sequences related to AWC/SWB generators , 1994 .

[49]  G. S. Fishman Multiplicative congruential random number generators with modulus 2^{}: an exhaustive analysis for =32 and a partial analysis for =48 , 1990 .

[50]  Karl Entacher,et al.  Bad subsequences of well-known linear congruential pseudorandom number generators , 1998, TOMC.

[51]  Paul Bratley,et al.  A guide to simulation (2nd ed.) , 1986 .

[52]  I. Vattulainen,et al.  Influence of Implementation on the Properties of Pseudorandom Number Generators with a Carry Bit , 1993 .

[53]  P. Hellekalek,et al.  Random and Quasi-Random Point Sets , 1998 .

[54]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[55]  Pierre L'Ecuyer,et al.  Testing random number generators , 1992, WSC '92.

[56]  Yosef S. Sherif,et al.  Development of a new composite pseudo random number generator , 1990 .

[57]  Pierre L'Ecuyer,et al.  Implementing a random number package with splitting facilities , 1991, TOMS.

[58]  Jiirgen Eichenauer-Herrmann,et al.  Pseudorandom Number Generation by Nonlinear Methods , 1995 .

[59]  Jürgen Eichenauer-Herrmann,et al.  Inversive congruential pseudorandom numbers : a tutorial , 1992 .

[60]  Pierre L'Ecuyer,et al.  Efficient and portable combined Tausworthe random number generators , 1990, TOMC.

[61]  George Marsaglia,et al.  Toward a universal random number generator , 1987 .

[62]  Stuart L. Anderson,et al.  Random Number Generators on Vector Supercomputers and Other Advanced Architectures , 1990, SIAM Rev..

[63]  Pierre L'Ecuyer,et al.  Maximally equidistributed combined Tausworthe generators , 1996, Math. Comput..

[64]  Makoto Matsumoto,et al.  Twisted GFSR generators II , 1994, TOMC.

[65]  Shu Tezuka,et al.  Lattice structure of pseudorandom sequences from shift-register generators , 1990, 1990 Winter Simulation Conference Proceedings.

[66]  Peter Hellekalek,et al.  On the assessment of random and quasi-random point sets , 1998 .

[67]  Pierre L'Ecuyer,et al.  A random number generator based on the combination of four LCGs , 1997 .

[68]  Jürgen Eichenauer-Herrmann,et al.  A new inversive congruential pseudorandom number generator with power of two modulus , 1992, TOMC.

[69]  Lothar Afflerbach The sub-lattice structure of linear congruential random number generators , 1986 .

[70]  Makoto Matsumoto,et al.  Strong deviations from randomness in m-sequences based on trinomials , 1996, TOMC.

[71]  G. Marsaglia,et al.  Matrices and the structure of random number sequences , 1985 .

[72]  Pierre L'Ecuyer,et al.  Linear recurrences with carry as uniform random number generators , 1995, WSC '95.

[73]  Pierre L'Ecuyer,et al.  Random Number Generators: Selection Criteria and Testing , 1998 .

[74]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[75]  Shu Tezuka,et al.  The k-distribution of generalized feedback shift register pseudorandom numbers , 1983, CACM.

[76]  Peter Hellekalek Don't trust parallel Monte Carlo! , 1998, Workshop on Parallel and Distributed Simulation.

[77]  H. Niederreiter The Multiple-Recursive Matrix Method for Pseudorandom Number Generation , 1995 .

[78]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[79]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[80]  F. J. Hickernell Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .

[81]  Pierre L'Ecuyer,et al.  Efficient and portable combined random number generators , 1988, CACM.

[82]  Peter Hellekalek Inversive pseudorandom number generators: concepts, results and links , 1995, WSC '95.

[83]  Ted G. Lewis,et al.  Generalized Feedback Shift Register Pseudorandom Number Algorithm , 1973, JACM.

[84]  Shu Tezuka,et al.  Uniform Random Numbers , 1995 .

[85]  R. Tausworthe Random Numbers Generated by Linear Recurrence Modulo Two , 1965 .

[86]  Harald Niederreiter,et al.  Recent trends in random number and random vector generation , 1991, Ann. Oper. Res..

[87]  Pierre L'Ecuyer,et al.  Lattice computations for random numbers , 2000, Math. Comput..

[88]  Alan M. Ferrenberg,et al.  Monte Carlo simulations: Hidden errors from "good" random number generators. , 1992, Physical review letters.

[89]  Pierre L'Ecuyer,et al.  An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators , 1997, INFORMS J. Comput..

[90]  Stefan Wegenkittl,et al.  Inversive and linear congruential pseudorandom number generators in empirical tests , 1997, TOMC.

[91]  L. R. Moore,et al.  An Exhaustive Analysis of Multiplicative Congruential Random Number Generators with Modulus $2^{31} - 1$ , 1986 .

[92]  J. P. R. Tootill,et al.  The Runs Up-and-Down Performance of Tausworthe Pseudo-Random Number Generators , 1971, JACM.

[93]  Aaldert Compagner,et al.  On the use of reducible polynomials as random number generators , 1993 .

[94]  T. Ala‐Nissila,et al.  Physical models as tests of randomness. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[95]  G. Marsaglia,et al.  A New Class of Random Number Generators , 1991 .

[96]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[97]  H. Niederreiter,et al.  Statistical independence properties of pseudorandom vectors produced by matrix generators , 1990 .

[98]  Adi Shamir,et al.  The discrete log is very discreet , 1990, STOC '90.

[99]  Hugo Krawczyk How to Predict Congruential Generators , 1992, J. Algorithms.

[100]  Shu Tezuka,et al.  On the lattice structure of the add-with-carry and subtract-with-borrow random number generators , 1993, TOMC.

[101]  Harald Niederreiter,et al.  A statistical analysis of generalized feedback shift register pseudorandom number generators , 1987 .

[102]  Pierre L'Ecuyer,et al.  Analysis of add-with-carry and subtract-with-borrow generators , 1992, WSC '92.

[103]  Harald Niederreiter,et al.  Figures of merit for digital multistep pseudorandom numbers , 1990 .

[104]  M. Luescher,et al.  A Portable High-quality Random Number Generator for Lattice Field Theory Simulations , 1993 .

[105]  J. P. R. Tootill,et al.  An Asymptotically Random Tausworthe Sequence , 1973, JACM.

[106]  Jürgen Lehn,et al.  A nonlinear congruential pseudorandom number generator with power of two modulus , 1988 .

[107]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[108]  Jürgen Lehn,et al.  On the period length of pseudorandom vector sequences generated by matrix generators , 1989 .

[109]  Paul Bratley,et al.  A guide to simulation , 1983 .

[110]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[111]  P. L'Ecuyer,et al.  About polynomial-time “unpredictable” generators , 1989, WSC '89.

[112]  A. Matteis,et al.  Parallelization of random number generators and long-range correlations , 1988 .

[113]  Linus Schrage,et al.  A guide to simulation , 1983 .

[114]  Jürgen Lehn,et al.  On the structure of quadratic congruential sequences , 1987 .

[115]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[116]  James H. Lindholm An analysis of the pseudo-randomness properties of subsequences of long m -sequences , 1968, IEEE Trans. Inf. Theory.

[117]  Pierre L'Ecuyer,et al.  Tables of maximally equidistributed combined LFSR generators , 1999, Math. Comput..

[118]  Harald Niederreiter,et al.  On a new class of pseudorandom numbers for simulation methods , 1994 .

[119]  S. Tezuka Uniform Random Numbers: Theory and Practice , 1995 .

[120]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[121]  J. Eichenauer-Herrmann Statistical independence of a new class of inversive congruential pseudorandom numbers , 1993 .

[122]  S. K. Park,et al.  Random number generators: good ones are hard to find , 1988, CACM.

[123]  Pierre L'Ecuyer,et al.  A search for good multiple recursive random number generators , 1993, TOMC.

[124]  Pierre L'Ecuyer,et al.  Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..

[125]  A. C. Atkinson,et al.  Tests of Pseudo-random Numbers , 1980 .

[126]  Arjen K. Lenstra Factoring Multivariate Polynomials over Finite Fields , 1985, J. Comput. Syst. Sci..