Uniform random number generators
暂无分享,去创建一个
[1] P. Hellekalek,et al. Inversive pseudorandom number generators: concepts, results and links , 1995, Winter Simulation Conference Proceedings, 1995..
[2] Pierre L'Ecuyer,et al. Distribution properties of multiply-with-c arry random number generators , 1997, Math. Comput..
[3] Art B. Owen,et al. Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.
[4] William H. Press,et al. Portable Random Number Generators , 1992 .
[5] G. Folland. Fourier analysis and its applications , 1992 .
[6] Makoto Matsumoto,et al. Twisted GFSR generators , 1992, TOMC.
[7] Pierre L'Ecuyer,et al. Random numbers for simulation , 1990, CACM.
[8] Pei-Chi Wu,et al. Multiplicative, congruential random-number generators with multiplier ± 2k1 ± 2k2 and modulus 2p - 1 , 1997, TOMS.
[9] Harald Niederreiter,et al. New Developments in Uniform Pseudorandom Number and Vector Generation , 1995 .
[10] R. R. Coveyou,et al. Fourier Analysis of Uniform Random Number Generators , 1967, JACM.
[11] H. Niederreiter. Nonlinear Methods for Pseudorandom Number and Vector Generation , 1992 .
[12] Manuel Blum,et al. A Simple Unpredictable Pseudo-Random Number Generator , 1986, SIAM J. Comput..
[13] Pierre L'Ecuyer,et al. Uniform random number generation , 1994, Ann. Oper. Res..
[14] M. J. Durst. Using linear congruential generators for parallel random number generation , 1989, WSC '89.
[15] H. Solomon,et al. On Combining Pseudorandom Number Generators , 1979 .
[16] Masanori Fushimi. Increasing the Orders of Equidistribution of the Leading Bits of the Tausworthe Sequence , 1983, Inf. Process. Lett..
[17] B. D. Ripley,et al. Uses and abuses of statistical simulation , 1988, Math. Program..
[18] George Marsaglia,et al. A random number generator for PC's , 1990 .
[19] Shu Tezuka,et al. Calculation of Fibonacci polynomials for GFSR sequences with low discrepancies , 1993 .
[20] J. Heringa,et al. New Primitive Trinomials Of Mersenne-Exponent Degrees For Random-Number Generation , 1992 .
[21] Jürgen Eichenauer-Herrmann,et al. A remark on long-range correlations in multiplicative congruential pseudo random number generators , 1989 .
[22] Bruce Jay Collings,et al. Compound Random Number Generators , 1987 .
[23] Pierre L'Ecuyer,et al. Combined Multiple Recursive Random Number Generators , 1995, Oper. Res..
[24] Douglas J. Morrice,et al. Higher-order cumulant spectral-based statistical tests of pseudo-random variate generators , 1992, WSC '92.
[25] Pierre L'Ecuyer,et al. Random Number Generators and Empirical Tests , 1998 .
[26] I. D. Hill,et al. An Efficient and Portable Pseudo‐Random Number Generator , 1982 .
[27] P. L’Ecuyer,et al. Supplement to On the Distribution of k-Dimensional Vectors for Simple and Combined Tausworthe Sequences , 1991 .
[28] U. Dieter,et al. How to calculate shortest vectors in a lattice , 1975 .
[29] Pierre L'Ecuyer,et al. Bad Lattice Structures for Vectors of Nonsuccessive Values Produced by Some Linear Recurrences , 1997, INFORMS J. Comput..
[30] Pierre L'Ecuyer,et al. Beware of linear congruential generators with multipliers of the form a = ±2q ±2r , 1999, TOMS.
[31] Harald Niederreiter,et al. The weighted spectral test: diaphony , 1998, TOMC.
[32] Stefan Wegenkittl,et al. A survey of quadratic and inversive congruential pseudorandom numbers , 1998 .
[33] David C. Hoaglin,et al. Remark AS R24: A Remark on Algorithm AS 98: The Spectral Test for the Evaluation of Congruential Pseudo-Random Generators , 1978 .
[34] Masanori Fushimi. An equivalence relation between Tausworthe and GFSR sequences and applications , 1989 .
[35] F. James. A Review of Pseudorandom Number Generators , 1990 .
[36] H. Grothe,et al. The lattice structure of pseudo-random vectors generated by matrix generators , 1988 .
[37] Brian D. Ripley,et al. Thoughts on pseudorandom number generators , 1990 .
[38] Lothar Afflerbach,et al. The exact determination of rectangle discrepancy for linear congruential pseudorandom numbers , 1989 .
[39] Jürgen Lehn,et al. A multiple recursive non-linear congruential pseudo random number generator , 1987 .
[40] Makoto Matsumoto,et al. Getting rid of correlations among pseudorandom numbers: discarding versus tempering , 1999, TOMC.
[41] Peter Hellekalek,et al. On correlation analysis of pseudorandom numbers , 1998 .
[42] A. Compagner. The hierarchy of correlations in random binary sequences , 1991 .
[43] Holger Grothe,et al. Matrix generators for pseudo-random vector generation , 1987 .
[44] George Marsaglia. Note on a Proposed Test for Random Number Generators , 1985, IEEE Transactions on Computers.
[45] Pierre L'Ecuyer,et al. Tables of linear congruential generators of different sizes and good lattice structure , 1999, Math. Comput..
[46] P. L’Ecuyer,et al. Structural properties for two classes of combined random number generators , 1990 .
[47] Pierre L'Ecuyer,et al. Orbits and lattices for linear random number generators with composite moduli , 1996, Math. Comput..
[48] P. L’Ecuyer,et al. On the lattice structure of certain linear congruential sequences related to AWC/SWB generators , 1994 .
[49] G. S. Fishman. Multiplicative congruential random number generators with modulus 2^{}: an exhaustive analysis for =32 and a partial analysis for =48 , 1990 .
[50] Karl Entacher,et al. Bad subsequences of well-known linear congruential pseudorandom number generators , 1998, TOMC.
[51] Paul Bratley,et al. A guide to simulation (2nd ed.) , 1986 .
[52] I. Vattulainen,et al. Influence of Implementation on the Properties of Pseudorandom Number Generators with a Carry Bit , 1993 .
[53] P. Hellekalek,et al. Random and Quasi-Random Point Sets , 1998 .
[54] Averill M. Law,et al. Simulation Modeling and Analysis , 1982 .
[55] Pierre L'Ecuyer,et al. Testing random number generators , 1992, WSC '92.
[56] Yosef S. Sherif,et al. Development of a new composite pseudo random number generator , 1990 .
[57] Pierre L'Ecuyer,et al. Implementing a random number package with splitting facilities , 1991, TOMS.
[58] Jiirgen Eichenauer-Herrmann,et al. Pseudorandom Number Generation by Nonlinear Methods , 1995 .
[59] Jürgen Eichenauer-Herrmann,et al. Inversive congruential pseudorandom numbers : a tutorial , 1992 .
[60] Pierre L'Ecuyer,et al. Efficient and portable combined Tausworthe random number generators , 1990, TOMC.
[61] George Marsaglia,et al. Toward a universal random number generator , 1987 .
[62] Stuart L. Anderson,et al. Random Number Generators on Vector Supercomputers and Other Advanced Architectures , 1990, SIAM Rev..
[63] Pierre L'Ecuyer,et al. Maximally equidistributed combined Tausworthe generators , 1996, Math. Comput..
[64] Makoto Matsumoto,et al. Twisted GFSR generators II , 1994, TOMC.
[65] Shu Tezuka,et al. Lattice structure of pseudorandom sequences from shift-register generators , 1990, 1990 Winter Simulation Conference Proceedings.
[66] Peter Hellekalek,et al. On the assessment of random and quasi-random point sets , 1998 .
[67] Pierre L'Ecuyer,et al. A random number generator based on the combination of four LCGs , 1997 .
[68] Jürgen Eichenauer-Herrmann,et al. A new inversive congruential pseudorandom number generator with power of two modulus , 1992, TOMC.
[69] Lothar Afflerbach. The sub-lattice structure of linear congruential random number generators , 1986 .
[70] Makoto Matsumoto,et al. Strong deviations from randomness in m-sequences based on trinomials , 1996, TOMC.
[71] G. Marsaglia,et al. Matrices and the structure of random number sequences , 1985 .
[72] Pierre L'Ecuyer,et al. Linear recurrences with carry as uniform random number generators , 1995, WSC '95.
[73] Pierre L'Ecuyer,et al. Random Number Generators: Selection Criteria and Testing , 1998 .
[74] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[75] Shu Tezuka,et al. The k-distribution of generalized feedback shift register pseudorandom numbers , 1983, CACM.
[76] Peter Hellekalek. Don't trust parallel Monte Carlo! , 1998, Workshop on Parallel and Distributed Simulation.
[77] H. Niederreiter. The Multiple-Recursive Matrix Method for Pseudorandom Number Generation , 1995 .
[78] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[79] Donald Ervin Knuth,et al. The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .
[80] F. J. Hickernell. Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .
[81] Pierre L'Ecuyer,et al. Efficient and portable combined random number generators , 1988, CACM.
[82] Peter Hellekalek. Inversive pseudorandom number generators: concepts, results and links , 1995, WSC '95.
[83] Ted G. Lewis,et al. Generalized Feedback Shift Register Pseudorandom Number Algorithm , 1973, JACM.
[84] Shu Tezuka,et al. Uniform Random Numbers , 1995 .
[85] R. Tausworthe. Random Numbers Generated by Linear Recurrence Modulo Two , 1965 .
[86] Harald Niederreiter,et al. Recent trends in random number and random vector generation , 1991, Ann. Oper. Res..
[87] Pierre L'Ecuyer,et al. Lattice computations for random numbers , 2000, Math. Comput..
[88] Alan M. Ferrenberg,et al. Monte Carlo simulations: Hidden errors from "good" random number generators. , 1992, Physical review letters.
[89] Pierre L'Ecuyer,et al. An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators , 1997, INFORMS J. Comput..
[90] Stefan Wegenkittl,et al. Inversive and linear congruential pseudorandom number generators in empirical tests , 1997, TOMC.
[91] L. R. Moore,et al. An Exhaustive Analysis of Multiplicative Congruential Random Number Generators with Modulus $2^{31} - 1$ , 1986 .
[92] J. P. R. Tootill,et al. The Runs Up-and-Down Performance of Tausworthe Pseudo-Random Number Generators , 1971, JACM.
[93] Aaldert Compagner,et al. On the use of reducible polynomials as random number generators , 1993 .
[94] T. Ala‐Nissila,et al. Physical models as tests of randomness. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[95] G. Marsaglia,et al. A New Class of Random Number Generators , 1991 .
[96] U. Fincke,et al. Improved methods for calculating vectors of short length in a lattice , 1985 .
[97] H. Niederreiter,et al. Statistical independence properties of pseudorandom vectors produced by matrix generators , 1990 .
[98] Adi Shamir,et al. The discrete log is very discreet , 1990, STOC '90.
[99] Hugo Krawczyk. How to Predict Congruential Generators , 1992, J. Algorithms.
[100] Shu Tezuka,et al. On the lattice structure of the add-with-carry and subtract-with-borrow random number generators , 1993, TOMC.
[101] Harald Niederreiter,et al. A statistical analysis of generalized feedback shift register pseudorandom number generators , 1987 .
[102] Pierre L'Ecuyer,et al. Analysis of add-with-carry and subtract-with-borrow generators , 1992, WSC '92.
[103] Harald Niederreiter,et al. Figures of merit for digital multistep pseudorandom numbers , 1990 .
[104] M. Luescher,et al. A Portable High-quality Random Number Generator for Lattice Field Theory Simulations , 1993 .
[105] J. P. R. Tootill,et al. An Asymptotically Random Tausworthe Sequence , 1973, JACM.
[106] Jürgen Lehn,et al. A nonlinear congruential pseudorandom number generator with power of two modulus , 1988 .
[107] Ronald L. Wasserstein,et al. Monte Carlo: Concepts, Algorithms, and Applications , 1997 .
[108] Jürgen Lehn,et al. On the period length of pseudorandom vector sequences generated by matrix generators , 1989 .
[109] Paul Bratley,et al. A guide to simulation , 1983 .
[110] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.
[111] P. L'Ecuyer,et al. About polynomial-time “unpredictable” generators , 1989, WSC '89.
[112] A. Matteis,et al. Parallelization of random number generators and long-range correlations , 1988 .
[113] Linus Schrage,et al. A guide to simulation , 1983 .
[114] Jürgen Lehn,et al. On the structure of quadratic congruential sequences , 1987 .
[115] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[116] James H. Lindholm. An analysis of the pseudo-randomness properties of subsequences of long m -sequences , 1968, IEEE Trans. Inf. Theory.
[117] Pierre L'Ecuyer,et al. Tables of maximally equidistributed combined LFSR generators , 1999, Math. Comput..
[118] Harald Niederreiter,et al. On a new class of pseudorandom numbers for simulation methods , 1994 .
[119] S. Tezuka. Uniform Random Numbers: Theory and Practice , 1995 .
[120] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[121] J. Eichenauer-Herrmann. Statistical independence of a new class of inversive congruential pseudorandom numbers , 1993 .
[122] S. K. Park,et al. Random number generators: good ones are hard to find , 1988, CACM.
[123] Pierre L'Ecuyer,et al. A search for good multiple recursive random number generators , 1993, TOMC.
[124] Pierre L'Ecuyer,et al. Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..
[125] A. C. Atkinson,et al. Tests of Pseudo-random Numbers , 1980 .
[126] Arjen K. Lenstra. Factoring Multivariate Polynomials over Finite Fields , 1985, J. Comput. Syst. Sci..