Modeling nuclei of radio galaxies from VLBI radio observations. Application to the BL Lac Object S5 1803+784

We present a new method to fit the variations of both coordinates of a VLBI component as a function of time, assuming that the nucleus of the radio source contains a binary black hole system (BBH system). The presence of a BBH system produces 2 perturbations of the trajectory of the ejected VLBI components. By using only the VLBI coordinates, the problem we have to solve reduces to an astrometric problem. Knowledge of the variations of the VLBI coordinates as a function of time contains the kinematical information, thus we are able to deduce the inclination angle of the source and the bulk Lorentz factor of the ejected component. Generally, there is a family of the BBH system producing the same fit to our data. To illustrate this method, we apply it to the source 1807+784. We find that the inclination of the source is i 0 = 5.8° + 1.7and the VLBI component is ejected with a bulk Lorentz factor of y = 3.7 +0.3 We determine the family of the BBH system which provides the best fit, assuming at first that the masses of the 2 black holes are equal and then that the masses are different. Each family of BBH systems is characterized by T p /T b ≈ 1.967, where Tp and T b are the precession period of the accretion disk of the black hole ejecting the VLBI component and the orbiting period of the BBH system.

[1]  R. M. Campbell,et al.  Large-scale motion, oscillations and a possible halo on the counter-jet side in 1803+784 , 2005 .

[2]  R. M. Campbell,et al.  The radio structure of S5 1803+784 , 2005 .

[3]  Paul S. Smith,et al.  Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array , 2005, astro-ph/0502501.

[4]  A. Lobanov,et al.  A supermassive binary black hole in the quasar 3C 345 , 2004, astro-ph/0411417.

[5]  D. Gabuzda,et al.  Parsec-scale Faraday rotation distribution in the BL Lac object 1803+784 , 2003 .

[6]  S. Lacour,et al.  Deuterium Abundance toward WD 2211–495: Results from the FUSE Mission , 2002 .

[7]  A. Marscher,et al.  Monthly 43 GHz VLBA Polarimetric Monitoring of 3C 120 over 16 Epochs: Evidence for Trailing Shocks in a Relativistic Jet , 2001, astro-ph/0110133.

[8]  R. M. Campbell,et al.  On the origin of compact radio sources. The binary black hole model applied to the gamma-bright quasar PKS 0420-014 , 2001 .

[9]  M. Torres,et al.  Absolute kinematics of radio source components in the complete S5 polar cap sample : I. First and second epoch maps at 8.4 GHz. , 2001 .

[10]  Bonn,et al.  Absolute kinematics of radio source components in the complete S5 polar cap sample - II. First and second epoch maps at 15 GHz , 2001, astro-ph/0408581.

[11]  D. Gabuzda,et al.  VLBI polarization images of eight compact active galactic nuclei at λ = 1.3 cm , 2000 .

[12]  D. Gabuzda VSOP observations of the compact BL Lacertae object 1803+784 , 1999 .

[13]  William B. Sparks,et al.  HUBBLE SPACE TELESCOPE Observations of Superluminal Motion in the M87 Jet , 1999 .

[14]  D. H. Roberts,et al.  Radio Jet-Ambient Medium Interactions on Parsec Scales in the Blazar 1055+018 , 1999, astro-ph/9903330.

[15]  G. Benford,et al.  Coherent emission and the escape of high brightness temperature radiation in active galactic nuclei , 1998 .

[16]  Athol J Kemball,et al.  The Subparsec-Scale Structure and Evolution of Centaurus A: The Nearest Active Radio Galaxy , 1998 .

[17]  L. Gurvits,et al.  Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. IV. Fine-Scale Structure , 2005, astro-ph/0505536.

[18]  R. Schlickeiser,et al.  The Beaming Pattern of Doppler-boosted Thermal Annihilation Radiation: Application to MeV Blazars , 1997, astro-ph/9701219.

[19]  Patrick Charlot,et al.  VLBA Observations of Radio Reference Frame Sources. II. Source Classification Based on Intrinsic Structure , 1996 .

[20]  C. Carilli,et al.  Cygnus A -- Study of a Radio Galaxy , 1996 .

[21]  G. Henri,et al.  Gamma-ray emission of blazars by a relativistic electron–positron beam , 1995 .

[22]  Stefan J. Wagner,et al.  Intraday Variability in Quasars and BL LAC Objects , 1995 .

[23]  H. Sol,et al.  Energetic particle beams in quasars and active galactic nuclei , 1992 .

[24]  T. Pearson Parsec-Scale Radio Jets , 1990 .

[25]  H. Sol,et al.  Two-flow model for extragalactic radio jets , 1989 .

[26]  Pelletier,et al.  Magnetized Langmuir wave packets excited by a strong beam-plasma interaction. , 1988, Physical review. A, General physics.

[27]  A. Readhead,et al.  The milliarcsecond structure of a complete sample of radio sources. II: First-epoch maps at 5 GHz , 1988 .

[28]  J. Miller,et al.  Deep radio maps of high-frequency selected BL Lac objects. , 1986 .

[29]  G. Pooley Superluminal radio sources , 1981, Nature.

[30]  S. Bowyer,et al.  Parameter estimation in X-ray astronomy , 1976 .